Hydrogen + corncobs (with a splash of boron) = fuel of the future?

October 9, 2008,

(PhysOrg.com) -- The next alternative fuel in a vehicle's tank might be nothing more than gas with a little help from corn. However, instead of the usual petroleum-based fuel, this gas will be hydrogen, and the corn will be in the form of corncob-charcoaled briquettes. To further develop this alternative fuel concept, researchers at the University of Missouri and Midwest Research Institute (MRI) were recently awarded a three-year, $1.9 million grant from the U.S. Department of Energy (DOE) to continue studying a solution to hydrogen storage in vehicles.

"Developmental hydrogen vehicles exist today but current designs require large, bulky tanks of compressed hydrogen gas to hold the fuel," said Peter Pfeifer, professor and chair of the Department of Physics in the MU College of Arts and Science. "The tanks also have a relatively small range, only holding enough fuel to travel up to 200 miles. We will be working on reducing the size and weight of the tank and increasing the storage capacity by developing storage materials that hold hydrogen at a much lower pressure than the current high-pressure tanks. The new tanks will store hydrogen on the surface of appropriately engineered carbons."

Pfeifer will work with M. Frederick Hawthorne, professor of radiology, chemistry and physics and director of the MU International Institute for Nano and Molecular Medicine; Carlos Wexler, associate professor of physics; Galen Suppes, professor of chemical engineering; and researchers at MRI in Kansas City to develop the hydrogen storage material. The research is a continuation of previous studies during which Pfeifer and his colleagues found that corncobs, when reduced to carbon briquettes and "doped" with boron, have a unique ability to store natural gas with high capacity at low pressure, a discovery that allows for more flexible and less bulky fuel tank designs.

First, Suppes will create carbon briquettes with high surface areas from corncobs in a special multi-step process. The high surface area, where one gram of carbon has an area comparable to a football field, is key to a high storage capacity, Pfeifer said. In the second step of the process, Hawthorne will add boron to the carbon in the briquettes through a process known as "boron doping." Previous research found that adding boron to the carbon greatly increases its storage capacity. Finally, Pfeifer and Wexler will design carbon and boron structures that maximize the storage capacity and will test the storage capacity.

MRI researchers will support the team by designing and constructing the doping system as well as a low temperature hydrogen uptake fixture that is used to determine how much hydrogen is stored per standard liter. MRI also will assist with project management responsibilities for the team.

"We are very pleased to be able to take the innovative fuel storage technology that we are developing for natural gas vehicles and now apply it to hydrogen storage," said Phil Buckley, MRI principal engineer. "It's an honor for the MU-MRI team to be selected by DOE to further develop these concepts."

"This method will help us design the best storage facility and, at the same time, determine the best way to create the material," Pfeifer said. "The collaboration we have on MU's campus as well as the expertise of the scientists and engineers at the Midwest Research Institute is vital to the success of our research. The MU Research Reactor Center also will play an important role in this study. Without this collaboration, this study would have been very difficult or impossible to complete."

Provided by University of Missouri-Columbia

Explore further: Scientists test world's first solar fuels reactor for night

Related Stories

Scientists test world's first solar fuels reactor for night

February 21, 2018

International solar thermal energy researchers have successfully tested CONTISOL, a solar reactor that runs on air, able to make any solar fuel like hydrogen and to run day or night - because it uses concentrated solar power ...

'Chemical net' could be key to capturing pure hydrogen

January 29, 2018

Hydrogen is one of the most abundant elements on Earth and an exceptionally clean fuel source. While it is making its way into the fuel cells of electric cars, busses and heavy equipment, its widespread use is hampered by ...

Scientists use egg whites for clean energy production

February 15, 2018

Researchers from the Osaka City University in Japan have developed a way to use egg whites as a substrate to produce a carbon-free fuel. They published their results on February 2nd in Applied Catalysis B.

Micromotors made easy

February 14, 2018

Researchers of the ICN2 Nanobioelectronics and Biosensors Group led by Prof. Arben Merkoçi have devised a simple manufacturing method for versatile graphene oxide-based micromotors. Requiring no special equipment, it can ...

Recommended for you

AI and 5G in focus at top mobile fair

February 24, 2018

Phone makers will seek to entice new buyers with better cameras and bigger screens at the world's biggest mobile fair starting Monday in Spain after a year of flat smartphone sales.

Google Assistant adds more languages in global push

February 23, 2018

Google said Friday its digital assistant software would be available in more than 30 languages by the end of the years as it steps up its artificial intelligence efforts against Amazon and others.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Zig158
not rated yet Oct 15, 2008
These "carbon briquettes" they mention is actually activated carbon. Activated Carbon is used for a lot of things but the one most people will be familiar with is water filters. It can be made out of any organic material, but they usually take wood, coal or walnut shells and bake them at 500 to 900 degrees centigrade until nothing is left but the carbon structure. All they did is find a new use for a slightly modified industrial product.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.