PHYS 19X

Good code, bad computations: A computer
security gray area

October 27 2008

If you want to make sure your computer or server is not tricked into undertaking
malicious or undesirable behavior, it's not enough to keep bad code out of the
system. Two graduate students from UC San Diego's computer science
department (L-R Ryan Roemer and Erik Buchanan) have just published work
showing that the process of building bad programs from good code using "return-
oriented programming" can be automated and that this vulnerability applies to
multiple computer architectures. Credit: UC San Diego Jacobs School of
Engineering

(PhysOrg.com) -- If you want to make sure your computer or server is
not tricked into undertaking malicious or undesirable behavior, it's not
enough to keep bad code out of the system.

Two graduate students from UC San Diego's computer science
department—Erik Buchanan and Ryan Roemer—have just published

1/5



PHYS 19X

work showing that the process of building bad programs from good code
using "return-oriented programming" can be automated and that this
vulnerability applies to RISC computer architectures and not just the x86
architecture (which includes the vast majority of personal computers).

Last year, UC San Diego computer science professor Hovav Shacham
formally described how return-oriented programming could be used to
force computers with the x86 architecture to behave maliciously without
introducing any bad code into the system. However, the attack required
painstaking construction by hand and appeared to rely a unique quirk of
the x86 design.

This new automation and generalization work from graduate students
and professors from UC San Diego's Jacobs School of Engineering will
be presented on October 28 at ACM's Conference on Communications
and Computer Security (CCS) 2008, one of the premier academic
computer security conferences.

"Most computer security defenses are based on the notion that
preventing the introduction of malicious code is sufficient to protect a
computer. This assumption is at the core of trusted computing, anti-virus
software, and various defenses like Intel and AMD's no execute
protections. There is a subtle fallacy in the logic, however: simply
keeping out bad code is not sufficient to keep out bad computation," said

UC San Diego computer science professor Stefan Savage, an author on
the CCS 2008 paper.

Return-oriented Programming

Return-oriented programming exploits start out like more familiar
attacks on computers. The attacker takes advantage of a programming
error in the target system to overwrite the runtime stack and divert
program execution away from the path intended by the system's

2/5



PHYS 19X

designers. But instead of injecting outside code—the approach used in
traditional malicious exploits—return-oriented programming enables
attackers to create any kind of nasty computation or program by using
just the existing code.

"You can create any kind of malicious program you can
imagine—Turing complete functionality," said Shacham.

For example, a user's Web browser could be subverted to record
passwords typed by the user or to send spam e-mail to all address book
contacts, using only the code that makes up the browser itself.

"There is value in showing just how big of a potential problem return-
oriented programming may turn out to be," said computer science
graduate student Erik Buchanan.

The term "return-oriented programming" describes the fact that the
"good" instructions that can be strung together in order to build
malicious programs need to end with a return command. The graduate
students showed that the process of building these malicious programs
from good code can be largely automated by grouping sets of
instructions into "gadgets" and then abstracting much of the tedious
work behind a programming language and compiler.

Imagine taking a 700 page book, picking and choosing words and
phrases in no particular order and then assembling a 50 page story that
has nothing to do with the original book. Return-oriented programming
allows you to do something similar. Here the 700 page book is the code
that makes up the system being attacked—for example, the standard C-
language library libc—and the story is the malicious program the
attacker wishes to have executed.

"We found that return-oriented programming poses a much more general

3/5



PHYS 19X

vulnerability than people initially thought," said computer science
graduate student Ryan Roemer. He and Buchanan chose to study return-
oriented programming for a class project after they heard Shacham
outline a series of open questions in a guest lecture he gave in Savage's
computer security course last winter.

Living with Return-Oriented Programming

"The threat posed by return-oriented programming, across all
architectures and systems, has negative implications for an entire class of
security mechanisms: those that seek to prevent malicious computation
by preventing the execution of malicious code," the authors write in their
CCS 2008 paper.

For instance, Intel and AMD have implemented security functionality
into their chips (NX/XD) that prevents code from being executed from
certain memory regions. Operating systems in turn use these features to
prevent input data from being executed as code (e.g., Microsoft's Data
Execution Prevention feature introduced in Windows XP SP2). The new
research from UC San Diego, however, highlights an entire class of
exploits that would not be stopped by these security measures since no
malicious code is actually executed. Instead, the stack is "hijacked" and
forced to run good code in bad ways.

"We have demonstrated that return-oriented exploits are practical to
write, as the complexity of gadget combination is abstracted behind a
programming language and compiler. Finally, we argue that this
approach provides a simple bypass for the vast majority of exploitation
mitigations in use today," the computer scientists write.

The authors outline a series of approaches to combat return-oriented
programming. Eliminating vulnerabilities permitting control flow
manipulation remains a high priority—as it has for 20 years. Other

4/5



PHYS 19X

possibilities: hardware and software support for further constraining
control flow and addressing the power of the return-oriented approach
itself.

"Finally, if the approaches fail, we may be forced to abandon the
convenient model that code is statically either good or bad, and instead
focus on dynamically distinguishing whether a particular execution
stream exhibits good or bad behavior," the authors write.

Related info:

"When Good Instructions Go Bad: Generalizing Return-Oriented
Programming to RISC," by Erik Buchanan, Ryan Roemer, Hovav
Shacham, and Stefan Savage, Department of Computer Science &
Engineering University of California, San Diego's Jacobs School of
Engineering.

cse.ucsd.edu/~rroemer/doc/sparc.pdf

Provided by University of California - San Diego

Citation: Good code, bad computations: A computer security gray area (2008, October 27)
retrieved 8 April 2024 from https://phys.org/news/2008-10-good-code-bad-gray-area.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

5/5


http://cse.ucsd.edu/~rroemer/doc/sparc.pdf
https://phys.org/news/2008-10-good-code-bad-gray-area.html
http://www.tcpdf.org

