New Research on Nanodiamond Materials

September 9, 2008
Microwave plasma chemical vapor deposition chamber shown in action growing ultrananocrystalline diamond films at Argonne's Center for Nanoscale Materials.

In a recent special issue of Chemical Vapor Deposition devoted to nanodiamonds, editors Amanda Barnard and Oliver Williams note that "the diversity of nanocarbon structures and allotropes has led to a plethora of growth techniques and unique properties, and has opened the door to a number of exciting applications."

An invited review article by Anirudha V. Sumant (CNM) and James Butler (Naval Research Laboratory) shows how nanocrystalline diamond is a designer material that can be tailored to specific applications. Materials that grow by using a suppression of renucleation, similar to conventional diamond growth, are distinguished from materials grown by using intentional enhancement of renucleation processes.

These specially designed nanodiamond materials find use in X-ray windows and lithography, micro- and nanomechanical and optical resonators, tribological shaft seals and AFM probes, electron field emitters, platforms for chemical and DNA sensing, to name a few applications.

The CNM offers a Lamda Technologies microwave plasma chemical vapor deposition system in its user program for the growth of ultrananocrystalline diamond films.

Further reading: "The CVD of Nanodiamond Materials," J.E. Butler and A.V. Sumant, Chem. Vap. Deposition, 14, 145–160 (2008) (online).

Provided by Argonne National Lab

Explore further: Tiny diamonds light the way for new quantum technologies

Related Stories

Nanodiamonds might prevent tooth loss after root canals

October 16, 2015

People undergoing root canals may have gained a powerful, if tiny, new ally. Researchers from the UCLA School of Dentistry have found that using nanodiamonds to fortify a material used in the procedure could significantly ...

Nanodiamonds deliver insulin for wound healing

July 27, 2009

(PhysOrg.com) -- Bacterial infection is a major health threat to patients with severe burns and other kinds of serious wounds such as traumatic bone fractures. Recent studies have identified an important new weapon for fighting ...

Recommended for you

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...

Researchers discover new way to power electrical devices

December 11, 2017

A team of University of Alberta engineers developed a new way to produce electrical power that can charge handheld devices or sensors that monitor anything from pipelines to medical implants.The discovery sets a new world ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.