
 

Keeping computing compatible

September 25 2008

(PhysOrg.com) -- As distributed computing becomes universal, the
programs that make devices work really have to work together.
European researchers have gone back to basics to create a development
toolkit that guarantees this sort of compatibility.

Early in 2006, an EU-funded research group called SIMS, for Semantic
Interfaces for Mobile Services, took on the challenge of how to envision,
design and develop the next generation of software to power widely
distributed and highly interactive devices.

The result – a suite of tools for speeding the design and validation of
software and services that are guaranteed to interact smoothly – is now
being applied and tested by a team of developers.

When SIMS-inspired services are widespread, says Richard Sanders, the
SIMS project coordinator, devices such as smart phones, PDAs, and
computers will interact with each other seamlessly, update themselves
automatically, and offer users the ability to implement new services that
are guaranteed to work from the start.

“If you have communicating software and the communication is
important, you want to make sure it works when it interacts with other
software,” says Sanders. “SIMS provides the tools to check those
scenarios and actually guarantees compatibility.”

Autonomous and collaborating components

1/4



 

The SIMS researchers based their approach on two key factors that they
felt had previously been neglected.

Communication and computation are becoming increasingly
collaborative and, at the same time, the programs and components that
make the devices that we rely on to work are becoming increasingly
autonomous.

To accomplish a goal as simple as delivering a package, multiple agents
using a wide range of fixed and mobile devices must exchange a variety
of messages. For the package to get to the right place at the right time,
every exchange has to produce the desired result.

So, the software components making all those interfaces work have to be
compatible.

Unlike a telephone call, where one device attempts to initiate a particular
kind of connection with another, most real-world services now involve
many loosely interconnected software components running on a variety
of devices initiating complex sequences of contacts and utilising many
different messaging modes.

Most developers, notes Sanders, still think in terms of a single client and
server, where one component takes the initiative and the other responds.
“We find this very limiting,” he says. “We’re used to lots of components
whose combined behaviour produces a service, and where many of them
can take the initiative.”

Coded for success

To reach their goal, the SIMS researchers had to re-examine the process
of service development from the ground up.

2/4



 

“The biggest challenge was to understand the basic concepts and find the
right way to explain them to ourselves and others,” says Sanders.
“Concepts like what is a service, what is a goal, what is a semantic
interface, and how do these relate to software?”

One result of their back-to-basics approach is that the development of a
new service starts with a model of what that service should accomplish
rather than with computer code.

The model uses semantic interfaces to specify what goals need to be
realised and how the components of the system need to behave and
interact to bring that about. Semantic interfaces detail, in a highly
structured way, what kinds of connections, exchanges and results are
meaningful and useful within a particular domain.

Crucially, the ability of components to communicate with and
understand each other can be checked within these models, rather than
after reams of computer code have been written.

“We can validate that nothing goes bad; that you don’t send me a
message that I won’t understand,” says Sanders.

Developers can create computer code to run devices directly from the
validated models, code that is guaranteed to work with all the
components of the system.

The researchers believe using their approach and tools could head off
most of the interaction errors that trip up systems and frustrate users.

In addition, devices could detect when new or improved services become
available, and update themselves automatically as they interact without
the risk of introducing incompatible software.

3/4



 

Sanders is eager to see SIMS used wherever interactive services and the
software that makes them work are being developed. The result he
envisages is a dynamic, service-oriented market place that would work
far more smoothly and efficiently than today.

“The greatest potential lies in the way it can support a market place with
lots of people specifying services and lots of companies making
components that implement these services,” says Sanders. “This market
place would support the spreading of software in a much more efficient
way than you currently see, and without quality and compatibility
problems.”

The SIMS project received funding under the ICT theme of the EU’s
Sixth Framework Programme for research.

Provided by ICT Results

Citation: Keeping computing compatible (2008, September 25) retrieved 3 May 2024 from 
https://phys.org/news/2008-09-compatible.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

4/4

http://cordis.europa.eu/ictresults
https://phys.org/news/2008-09-compatible.html
http://www.tcpdf.org

