Engineer Taps Heat-Loving Bacteria for Hydrogen

July 30, 2008
Thermotoga maritima (green/yellow rods) growing in co-culture with Methanococcus jannaschii (red spheres). T. maritima ferments sugars to hydrogen and M. jannaschii converts hydrogen to methane.

A North Carolina State University engineer has been awarded a $1.6 million grant from the U.S. Department of Energy to learn more about the microbiology, genetics and genomics behind how and why heat-loving bacteria called thermotogales produce large amounts of hydrogen with unusually high efficiencies. These microorganisms are found all over the globe in areas which are naturally hot – including volcanic sediments, hot springs and brines from deep oil wells.

The findings could help propel the use of hydrogen for many energy applications, including a new era of automobile travel. Hydrogen-powered cars, which exist in limited and expensive supply, are considered by many to be the holy grail of future vehicle travel.

Figuring out the mechanisms behind thermotogale hydrogen production and exploiting these insights for applications in new hydrogen fuel cells could make hydrogen cars ubiquitous and provide one answer to the global energy crisis, says Dr. Robert Kelly, Alcoa Professor of Chemical and Biomolecular Engineering at NC State and the principal investigator for the grant.

Kelly will work with colleagues from the University of Connecticut and the University of Nebraska-Lincoln to learn more about how the thermatogales consume sugars and produce hydrogen in such efficient ways.

"These organisms produce copious amounts of hydrogen as a waste product of their metabolism, even though hydrogen ultimately inhibits their growth," Kelly says. "We'd like to learn more about the connection between sugar consumption and hydrogen yields and how to take advantage of their unique bioenergetics at high temperatures."

Kelly has worked with a number of different heat-loving organisms over the past 25 years, and has learned a lot about them, including how to effectively grow them in his lab. Besides hydrogen-producing organisms, he is also interested in organisms that efficiently break down cellulose – the primary structural component of plants – to produce sugars that can be fermented into ethanol. One of the current areas of interest is how different microorganisms from high temperature environments coexist and at the same time produce enzymes or byproducts, such as hydrogen, for biofuels applications.

"Figuring out exactly how these organisms tick – and how different types of organisms work together or are at odds with one another in nature – could yield important insights that get us to alternative energy sources in the near future," Kelly says.

Provided by North Carolina State University

Explore further: Team develops new method to create the next fuel-efficient renewable energy

Related Stories

New device produces hydrogen peroxide for water purification

April 3, 2017

Limited access to clean water is a major issue for billions of people in the developing world, where water sources are often contaminated with urban, industrial and agricultural waste. Many disease-causing organisms and organic ...

How green algae assemble their enzymes

March 27, 2017

Researchers at Ruhr-Universität Bochum have analysed how green algae manufacture complex components of a hydrogen-producing enzyme. The enzyme, known as the hydrogenase, may be relevant for the biotechnological production ...

A 'bionic leaf' could help feed the world

April 3, 2017

In the second half of the 20th century, the mass use of fertilizer was part of an agricultural boom called the "green revolution" that was largely credited with averting a global food crisis. Now, the challenge of feeding ...

Recommended for you

Humans in America '115,000 years earlier than thought'

April 26, 2017

High-tech dating of mastodon remains found in southern California has shattered the timeline of human migration to America, pushing the presence of hominins back to 130,000 years ago rather than just 15,000 years, researchers ...

'Iceball' planet discovered through microlensing

April 26, 2017

Scientists have discovered a new planet with the mass of Earth, orbiting its star at the same distance that we orbit our sun. The planet is likely far too cold to be habitable for life as we know it, however, because its ...

Sun's eruptions might all have same trigger

April 26, 2017

Large and small scale solar eruptions might all be triggered by a single process, according to new research that leads to better understanding of the Sun's activity.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.