Physicists determine density limit for randomly packed spherical materials

June 2, 2008

The problem of how many identical-sized spheres can be randomly packed into a container has challenged mathematicians for centuries. A team of physicists at The City College of New York (CCNY) has come up with a solution that could have implications for everything from processing granular materials to shipping fruit.

Writing in the May 29 edition of Nature, they demonstrate that random packing of hard, i.e. non-crushable, spheres in three dimensions cannot exceed a density limit of 63.4 percent of the volume. This upper limit is a consequence of a completely "jammed" state that occurs when the materials are at their lowest energy levels, i.e. as close to inert as possible.

"Theoretically, the jammed state would be achieved by lowering the temperature of the spheres to approach absolute zero, since this would cause them to contract," explained Dr. Hernán Makse, CCNY Associate Professor of Physics and principal investigator. "In real life, however, it is attained by shaking the materials."

The findings have potential applications for the manufacture of pharmaceuticals and cosmetics, where powders have to be mixed to a homogenous consistency, he said. Currently, manufacturers must rely on empirical data, i.e. trial and error, to establish their formulas. Professor Makse said his goal is to develop a theory of powders that could enable manufacturers to more efficiently develop new products.

Source: City College of New York

Explore further: How to prevent 3-D printing hacks? Install secret flaws and share the decoder ring

Related Stories

Finding alien megastructures around nearby pulsars

May 16, 2017

During the 1960s, Freeman Dyson and Nikolai Kardashev captured the imaginations of people everywhere by making some radical proposals. Whereas Dyson proposed that intelligent species could eventually create megastructures ...

Recommended for you

New scaling law predicts how wheels drive over sand

May 30, 2017

When engineers design a new aircraft, they carry out much of the initial testing not on full-sized jets but on model planes that have been scaled down to fit inside a wind tunnel. In this more manageable setting, they can ...

Toward mass-producible quantum computers

May 26, 2017

Quantum computers are experimental devices that offer large speedups on some computational problems. One promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

JKF
4 / 5 (2) Jun 02, 2008
The density limit of spheres is 64.95 percent.

Do your math!
h0dges
4 / 5 (2) Jun 02, 2008
The density limit of spheres is 64.95 percent.

Do your math!

Actually for FCC packing (the highest close-packing possible), the density limit is 74.048%

Do your math!

Anyway the article is about random packing, not perfect close-packing, completely different issue which has to involve complex statistics.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.