Scientists in Japan design first optical pacemaker for laboratory research

May 28, 2008

The world's first optical pacemaker is described in an article published today in Optics Express, the Optical Society’s open-access journal. A team of scientists at Osaka University in Japan show that powerful, but very short, laser pulses can help control the beating of heart muscle cells.

"If you put a large amount of laser power through these cells over a very short time period, you get a huge response," says Nicholas Smith, who led the research. The laser pulses cause the release of calcium ions within the cells, Smith explains, and this action forces the cells to contract.

This technique provides a tool for controlling heart muscle cells in the laboratory, a breakthrough that may help scientists better understand the mechanism of heart muscle contraction.

One potential application of this technology is in studying uncoordinated contractions in heart muscle. Normally, heart muscle contracts in a highly coordinated fashion, and this is what allows the heart to pump blood through the vasculature. But in some people, this coordinated beating breaks down, and the heart twitches irregularly—a condition known as fibrillation.

The new laser technique may allow scientists to create a form of fibrillation in the test tube. The lasers can destabilize the beating of the cells in laboratory experiments by introducing a beat frequency in one target cell distinct from the surrounding cells. This would allow scientists to study irregular heart beats on a cellular level and screen anti-fibrillation drugs.

Outside the laboratory, exposing heart muscle cells to powerful laser pulses can have its drawbacks. Although the laser pulses last for less than a trillionth of a second, damaging effects can build up over time and this currently limits the possibility of clinical applications.

Source: Optical Society of America

Explore further: NASA biology experiments are space station-bound

Related Stories

NASA biology experiments are space station-bound

December 13, 2017

Several bioscience experiments developed at NASA's Ames Research Center, in California's Silicon Valley are about to launch to the International Space Station on SpaceX's 13th commercial resupply services mission for NASA

Recommended for you

Single-photon detector can count to four

December 15, 2017

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working ...

Real-time observation of collective quantum modes

December 15, 2017

A cylindrical rod is rotationally symmetric - after any arbitrary rotation around its axis it always looks the same. If an increasingly large force is applied to it in the longitudinal direction, however, it will eventually ...

A shoe-box-sized chemical detector

December 15, 2017

A chemical sensor prototype developed at the University of Michigan will be able to detect "single-fingerprint quantities" of substances from a distance of more than 100 feet away, and its developers are working to shrink ...

An ultradilute quantum liquid made from ultra-cold atoms

December 14, 2017

ICFO researchers created a novel type of liquid 100 million times more dilute than water and 1 million times thinner than air. The experiments, published in Science, exploit a fascinating quantum effect to produce droplets ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.