New Properties Discovered for Nanotube Sheets

April 25, 2008
New Properties Discovered for Nanotube Sheets
Atomic force micrograph of multi-walled carbon nanotubes in buckypaper. Each of these nanotubes is 10,000 times as thin as a human hair. Credit: University of Texas at Dallas

A team of nanotechnologists at The University of Texas at Dallas, along with Brazilian collaborators, have discovered that sheets of carbon nanotubes can produce bizarre mechanical properties when stretched or uniformly compressed. These unexpected but highly useful properties could be used for such applications as making composites, artificial muscles, gaskets or sensors. The team’s findings are reported in the April 25 issue of the journal Science.

When most materials are pulled in one direction, they get thinner in the other direction, similar to how a rubber band behaves when it is stretched. However, specially designed carbon nanotube sheets, dubbed “buckypaper,” can increase in width when stretched. The buckypaper can also increase in both length and width when uniformly compressed.

Ordinary materials contract laterally when stretched — a phenomenon that can be quantified by Poisson’s ratio, which is the ratio of the percent lateral contraction to the percent applied stretch.

Without realizing it, people have been using Poisson’s ratio for more than 2,000 years — in the form of wine bottle corks. Corks have a near-zero but positive Poisson’s ratio, which makes them difficult to insert but easy to remove. The opposite would be true if the cork had a negative Poisson’s ratio.

Dr. Ray H. Baughman, Robert A. Welch Professor of Chemistry and director of UT Dallas’ NanoTech Institute, and his colleagues created their nanotube sheets, or buckypaper, by using ancient methods for making ordinary writing paper — by drying a fiber slurry (Figure 1). The slurry has a mixture of carbon single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs). The researchers found that increasing the amount of MWNTs in the paper produced a sharp transition from a positive Poisson’s ratio of about 0.06 to a much larger magnitude negative value of about -0.20.

As described by the team in Science, this transition can be understood by relating the deformation modes of the nanotube sheets to those of a collapsible wine rack (see Figure 2). If two neighboring nanotube layers are coupled like the struts in a compressible wine rack, Poisson’s ratio is positive and the rack becomes narrower when stretched. In contrast, if the rack is blocked so that it can no longer be collapsed but the struts are stretchable, increases in strut length produce a negative Poisson’s ratio.

“This abrupt switching of the sign of Poisson’s ratio is so surprising and the structure of the nanotube sheets is so complicated that we initially believed that quantitative explanation was impossible using state-of-art theoretical capabilities,” said Baughman, the article’s corresponding author. “Distant daily teaming with our Brazilian colleagues through the Internet enabled us to jointly extract essential features from a structure that was much too complex for complete analysis, leading to our successful wine-rack-like model.”

Baughman and his team subsequently found that the nanotube sheets containing both single-walled and multi-walled nanotubes had a 1.6 times higher strength-to-weight ratio, 1.4 times higher modulus-to-weight ratio and a 2.4 times higher toughness than sheets made of SWNTs or MWNTs alone.

According to Baughman, the implications of the discovery that properties can be enhanced by mixing nanotube types can likely be extended from nanotube sheets to other nanotube arrays, like the twisted nanotube yarns Baughman and colleagues invented in 2005.

Similarly, the ability to tune Poisson’s ratio (Figure 3) could be exploited for designing sheet-derived composites, artificial muscles, gaskets, stress and strain sensors and chemical sensors.

A thick nanotube sheet could also be made to wrap around a concave, convex, or saddle shaped surface depending on the sign of Poisson’s ratio — something that could come in useful for forming shaped composites.

By choosing the ratio of SWNTs and MWNTs, the Poisson ratio can be adjusted to zero, which is useful for designing cantilevers for sensing that do not distort in width during bending. Tensile sensors can provide a sensitivity that is proportional to the volume change produced by stretch, and this volume change can be increased by the team’s discovery of the tunability of Poisson’s ratio.

The breakthroughs resulted from the diverse expertise of the article’s co-authors, who come from around the world: Dr. Lee Hall and Dr. Ray Baughman from the U.S., Dr. Vitor Coluci, Dr. Douglas Galvão, and Dr. Sócrates Dantas from Brazil, Dr. Mikhail Kozlov from the Ukraine and Dr. Mei Zhang from China. Hall, the first author on the article, made his contributions to the discovery as part of his Ph.D. under the direction of Baughman. Lee and Baughman previously co-authored a paper in Science about fuel-powered artificial muscles.

Source: University of Texas at Dallas

Explore further: Super honeycomb shows more potential for carbon nanotubes

Related Stories

Super honeycomb shows more potential for carbon nanotubes

January 19, 2007

The hexagonal network structure makes these nanotubes look a bit like a honeycomb—or, when stretched a bit, like a hammock or fish net. In fact, the stretchiness of these 20-nm-long carbon nanotubes enables them to do what ...

Proposed graphene cardboard has highly tunable properties

March 21, 2014

( —Carbon nanomaterials come in many different forms, such as diamond, aerogels, graphene, and soot. Sometimes carbon nanomaterials are even used as building blocks for making more complex nanomaterials. One recent ...

Recommended for you

Injectable plant-based nanoparticles delay tumor progression

June 28, 2017

Researchers from Case Western Reserve University School of Medicine in collaboration with researchers from Dartmouth Geisel School of Medicine and RWTH Aachen University (Germany) have adapted virus particles—that normally ...

A levitated nanosphere as an ultra-sensitive sensor

June 28, 2017

Sensitive sensors must be isolated from their environment as much as possible to avoid disturbances. Scientists at ETH Zurich have now demonstrated how to remove from and add elementary charges to a nanosphere that can be ...

Ruthenium rules for new fuel cells

June 28, 2017

Rice University scientists have fabricated a durable catalyst for high-performance fuel cells by attaching single ruthenium atoms to graphene.

Researchers create very small sensor using 'white graphene'

June 28, 2017

Researchers from TU Delft in The Netherlands, in collaboration with a team at the University of Cambridge (U.K.), have found a way to create and clean tiny mechanical sensors in a scalable manner. They created these sensors ...


Adjust slider to filter visible comments by rank

Display comments: newest first

4 / 5 (4) Apr 25, 2008
Go away Neil Farbstein. Peddle your shameless marketing somewhere else. You can't even put together a decent webpage.
5 / 5 (2) Apr 25, 2008
Figure 1, 2, 3? Where are you...
5 / 5 (3) Apr 25, 2008
Vulvox Inc? Is that some company making artificial sexshop style vulvas from carbon nanotubes?
5 / 5 (2) Apr 25, 2008
HA, hey, nice article niel, but it was supposed to be a comment, not an infomercial
5 / 5 (1) Apr 26, 2008
I would like to see nanotube glass made someday. Super strong, very lightweight, etc.
not rated yet Apr 27, 2008
Carbon nanotubes.. Is there anything they can't do?
5 / 5 (1) Apr 27, 2008
For "Figure 1, 2, 3? Where are you.."
Look at university of Dallas release:

not rated yet May 11, 2008
>Without realizing it, people have been using Poisson%u2019s ratio for more than 2,000 years %u2014 in the form of wine bottle corks.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.