Laser experiments offer insight into evolution of 'gas giants'

April 28, 2008
Laser experiments offer insight into evolution of 'gas giants'
Shown is a time-integrated photo of one of the Omega laser experiments where the research team discovered ultra high compressibility of helium at the metal insulator transition.

By shooting the high-energy Omega laser onto precompressed samples of planetary fluids, scientists are gaining a better understanding of the evolution and internal structure of Jupiter, Saturn and extrasolar giant planets.

The properties of dense helium (He) — which happens to be a principal constituent of giant gas planets like Jupiter — at thermodynamic conditions between those of condensed matter and high-temperature plasmas are theoretically challenging and unexplored experimentally.

Laboratory scientists collaborating with researchers at the Laboratory for Laser Energetics, CEA France and UC Berkeley were able to determine the equation of state (EOS) for fluid He at pressures above 100 GPa (one million times more pressure than the Earth’s atmosphere — one GPa (gigapascal) equals 10,000 atmospheres).

Pre-compressed helium sample
A pre-compressed helium sample is shown prior to shot in diamond anvil cell. The square is quartz reference, the circle is a gasket containing high-pressure fluid helium. After the shot, all that remains is a 2 mm hole in the target.

The only previous high temperature and pressure He EOS data available for constraining planetary models was performed at LLNL by Bill Nellis and his team using a two-stage gas gun. However, those earlier experiments used cryogenic techniques at ambient pressure so their densities were significantly lower than those achieved with the precompressed samples. Also, the final pressures, 16 GPa for a single shock, were significantly lower than the new laser shock data.

Theoretical research points out that material deep within a planet’s interior could exhibit unusual characteristics, such as high-temperature superconductivity, superfluidity and Wigner crystallization.

“The state of materials in the center of a giant planet are difficult to observe and challenging to create or predict,” said Gilbert Collins of the Physical Sciences Directorate. “Defining the equation of state of helium at these pressures is a first step to deepen our understanding of these massive objects.”

Jupiter is thought to contain matter to near 100 Mbar (100 million atmospheres of pressure.)

The LLNL team of Jon Eggert, Peter Celliers, Damien Hicks and Collins, together with several university collaborators from UC Berkeley, the Carnegie Geophysical Institute, CEA, Princeton, Washington State and the University of Michigan, plan to conduct experiments at the National Ignition Facility. There they will be able to recreate and characterize the core states of solar and extrasolar giants, as well as terrestrial planets, such as the recently discovered “superEarths,” to better understand the evolution of such planets throughout the universe.

Using the Omega laser at the Laboratory for Laser Energetics at the University of Rochester, the team launched strong shocks in He that was already compressed to an initial high state of pressure and density in a diamond anvil cell. Precompression allows researchers to tune the sample’s initial density and the final states that can be achieved with strong shocks.

Quartz was used as a reference material, allowing shock velocities to be determined just before and after the shock crossed the quartz-He interface. This technique reduced the measurement uncertainty as compared to previous studies.

“By applying a strong shock to a precompressed sample,” Collins said, “we can re-create the deep interior states of solar and extrasolar giant planets.”

The diamond anvil’s thickness determines the initial precompressed pressure. To prevent the sample from being heated before the shock, a preheat barrier was used to absorb the high-energy X-rays. An ultrafast diagnostic called VISAR (Velocity Interferometer System for Any Reflector), which works like a speedometer for shocks, recorded the shock velocity of the sample and reference material. From these data, the team determined the density and pressure of the shocked precompressed helium.

A pre-compressed helium sample is shown prior to shot in diamond anvil cell. The square is quartz reference, the circle is a gasket containing high-pressure fluid helium. After the shot, all that remains is a 2 mm hole in the target.

By applying laser-driven shocks to statically compressed samples, equation of state data for fluid He have been obtained with sufficient accuracy in the 100 GPa pressure range to test theoretical predictions.

They also discovered that near 100 GPa, the shock-compressed He transformed to an electronically conductive state and the shock front reflects the 532-nanometer probe laser beam of the VISAR.

The research also has other applications in the national security arena because the extreme conditions in a planet’s deep interior also occur during a nuclear weapon detonation. Plans are under way to significantly extend these research results with experiments at the National Ignition Facility.

The research appeared in the March 28 edition of Physical Review Letters.

Source: Lawrence Livermore National Laboratory

Explore further: Shock front probed by protons

Related Stories

Shock front probed by protons

August 11, 2017

A shock front is usually considered as a simple discontinuity in density or pressure. Yet in strongly shocked gases, the atoms are ionized into electrons and ions. The large difference in the electron pressure across the ...

Probing the possibility of life on super-Earths

June 19, 2017

Along with its aesthetic function of helping create the glorious Aurora Borealis, or Northern Lights, the powerful magnetic field surrounding our planet has a fairly important practical value as well: It makes life possible.

Defining a national standard for dynamic pressure waves

May 25, 2015

In recent years, the physical damage done by pressure waves – such as traumatic brain injuries from explosives sustained by military personnel in the Middle East – has become an increasingly urgent public concern.

Generating pressures at the cores of giant planets

May 2, 2007

Combining diamond anvils and powerful lasers, laboratory researchers have developed a technique that should be able to squeeze materials to pressures 100 to 1,000 times greater than possible today, reproducing conditions ...

Recommended for you

New bioimaging technique is fast and economical

August 18, 2017

A new approach to optical imaging makes it possible to quickly and economically monitor multiple molecular interactions in a large area of living tissue—such as an organ or a small animal; technology that could have applications ...

Team images tiny quasicrystals as they form

August 17, 2017

When Israeli scientist Daniel Shechtman first saw a quasicrystal through his microscope in 1982, he reportedly thought to himself, "Eyn chaya kazo"—Hebrew for, "There can be no such creature."


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.