Researchers achieve dramatic increase in thermoelectric efficiency

March 20, 2008
A Cross-Section of Nano-Crystalline Bismuth Antimony Telluride Grains
A cross-section of nano-crystalline bismuth antimony telluride grains, as viewed through transmission electron microscope. Colors highlight the features of each grain of the semiconductor alloy in bulk form. A team of researchers from Boston College and MIT produced a major increase in thermoelectric efficiency after using nanotechnology to structure the material, which is commonly used in industry and research. Credit: Boston College, MIT and GMZ Inc.

Researchers at Boston College and MIT have used nanotechnology to achieve a major increase in thermoelectric efficiency, a milestone that paves the way for a new generation of products — from semiconductors and air conditioners to car exhaust systems and solar power technology — that run cleaner.

The team’s low-cost approach, details of which are published today in the online version of the journal Science, involves building tiny alloy nanostructures that can serve as micro-coolers and power generators. The researchers said that in addition to being inexpensive, their method will likely result in practical, near-term enhancements to make products consume less energy or capture energy that would otherwise be wasted.

The findings represent a key milestone in the quest to harness the thermoelectric effect, which has both enticed and frustrated scientists since its discovery in the early 19th century. The effect refers to certain materials that can convert heat into electricity and vice versa. But there has been a hitch in trying to exploit the effect: most materials that conduct electricity also conduct heat, so their temperature equalizes quickly. In order to improve efficiency, scientists have sought materials that will conduct electricity but not similarly conduct heat.

Using nanotechnology, the researchers at BC and MIT produced a big increase in the thermoelectric efficiency of bismuth antimony telluride — a semiconductor alloy that has been commonly used in commercial devices since the 1950s — in bulk form. Specifically, the team realized a 40 percent increase in the alloy’s figure of merit, a term scientists use to measure a material’s relative performance. The achievement marks the first such gain in a half-century using the cost-effective material that functions at room temperatures and up to 250 degrees Celsius. The success using the relatively inexpensive and environmentally friendly alloy means the discovery can quickly be applied to a range of uses, leading to higher cooling and power generation efficiency.

“By using nanotechnology, we have found a way to improve an old material by breaking it up and then rebuilding it in a composite of nanostructures in bulk form,” said Boston College physicist Zhifeng Ren, one of the leaders of the project. “This method is low cost and can be scaled for mass production. This represents an exciting opportunity to improve the performance of thermoelectric materials in a cost-effective manner.”

“These thermoelectric materials are already used in many applications, but this better material can have a bigger impact,” said Gang Chen, the Warren and Towneley Rohsenow Professor of Mechanical Engineering at MIT and another leader of the project.

At its core, thermoelectricity is the “hot and cool” issue of physics. Heating one end of a wire, for example, causes electrons to move to the cooler end, producing an electric current. In reverse, applying a current to the same wire will carry heat away from a hot section to a cool section. Phonons, a quantum mode of vibration, play a key role because they are the primary means by which heat conduction takes place in insulating solids.

Bismuth antimony telluride is a material commonly used in thermoelectric products, and the researchers crushed it into a nanoscopic dust and then reconstituted it in bulk form, albeit with nanoscale constituents. The grains and irregularities of the reconstituted alloy dramatically slowed the passage of phonons through the material, radically transforming the thermoelectric performance by blocking heat flow while allowing the electrical flow.

In addition to Ren and six researchers at his BC lab, the international team involved MIT researchers, including Chen and Institute Professor Mildred S. Dresselhaus; research scientist Bed Poudel at GMZ Energy, Inc, a Newton, Mass.-based company formed by Ren, Chen, and CEO Mike Clary; as well as BC visiting Professor Junming Liu, a physicist from Nanjing University in China.

Thermoelectric materials have been used by NASA to generate power for far-away spacecraft. These materials have been used by specialty automobile seat makers to keep drivers cool during the summer. The auto industry has been experimenting with ways to use thermoelectric materials to convert waste heat from a car exhaust systems into electric current to help power vehicles.

Source: Boston College

Explore further: New approach boosts performance in thermoelectric materials

Related Stories

New approach boosts performance in thermoelectric materials

September 18, 2017

Thermoelectric materials are considered a key resource for the future - able to produce electricity from sources of heat that would otherwise go to waste, from power plants, vehicle tailpipes and elsewhere, without generating ...

A new efficient and portable electrocaloric cooling device

September 15, 2017

(Phys.org)—A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. In their paper published in the journal Science, the ...

Recommended for you

Holograms for molecules

September 25, 2017

Much can be detected in blood or urine: viral illnesses, metabolic disorders or autoimmune diseases can be diagnosed with laboratory tests, for instance. But such examinations often take a few hours and are quite complex, ...

Four elements make 2-D optical platform

September 21, 2017

Rice University scientists have discovered a two-dimensional alloy with an optical bandgap that can be tuned by the temperature used to grow it.

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

ShadowRam
1 / 5 (1) Mar 20, 2008
IF the material isn't too heavy, then this could definitely help in a Hybrid Vehicle. Where the ICE could not only produce raw power, but the wasted heat can also be re-accumulated
zevkirsh
1 / 5 (2) Mar 20, 2008
this may also have ramifications for HVAC..... Air conditioners are probably the most antiquated, un-improved industrial technologies still out there.
Z
UncleMatt
5 / 5 (1) Mar 20, 2008
Does anyone know what the final efficiency that was achieved? Some thermoelectric materials are under 5% efficient, so doubling is making progress, but hardly and hopefully not the final efficiency that can be reached.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.