Work with power grids leads to cell biology discovery

March 17, 2008

Gene therapy, in which a working gene is inserted into a cell to replace a faulty or absent gene, is a promising experimental technique for the prevention and treatment of disease.

Now a research team led by a Northwestern University physicist reports that a counterintuitive approach also holds promise. The targeted removal of genes -- the exact opposite of what a gene therapist would do -- can restore cellular function in cells with genetic defects, such as mutations.

Published online in the journal Molecular Systems Biology, the results have ramifications for medical research as well as for optimizing certain metabolic processes used in the production of biofuels, such as ethanol.

After gathering extensive experimental information on the metabolic networks of three different single-celled organisms, the researchers built a general quantitative model that can be used to control and restore biological function to cells impaired by a genetic defect or by other factors that compromise gene activity. Their network-based method does this by targeted deletion of genes, forcing the cell to either bypass the functions affected by the defective gene or to compensate for the lost function.

The research, led by Adilson E. Motter, assistant professor of physics and astronomy in Northwestern’s Weinberg College of Arts and Sciences and the paper’s lead author, grew out of Motter’s earlier work on the U.S. power grid -- another complex system that is very different from biological systems but also with many similarities.

After the 2003 Northeast blackout, where a sequence of failures in the power grid led to the largest outage in U.S. history, experts determined that the event could have been reduced or avoided by instigating small intentional blackouts in the system during the initial hours of instability.

“And the same could be valid in biology, where a defective gene may trigger a cascade of ‘failures’ along the cellular network,” said Motter, whose interest and expertise lie in complex systems and understanding how the structure and dynamics of a high-dimensional system, such as an intracellular network or a power grid, relate to its function.

“Our recent research shows that what is true in power networks is also true in biological networks. Inflicting a small amount of damage can control what otherwise would be much more significant damage.”

With the experimental information assembled, the researchers used their computer model to simulate the organism and its function. They started with a perfect cell and then, with a key gene deletion, damaged the cell so that it was unable to grow or had a significantly reduced growth rate.

Next, the researchers restored growth by deleting additional genes, which stimulated the cell to make a different choice and use different pathways. Interestingly, the cell’s recovery was stronger when more genes were deleted. They could even restore growth to non-growing mutant cells; the researchers dubbed this the “Lazarus effect.”

“Our research is based on optimizing the use of resources already available in the cell,” said Motter. “We are exploring existing reactions and genes in the cell that the cell would not use or use to a lesser degree under normal conditions. This is different from traditional gene therapy, which is based on introducing new genes into the cell -- with its own advantages and problems because of that.”

The team’s use of predictive models is similar to how physicists use models, for example, to determine the position of the moon tomorrow at a specific time. Thanks to the recent wealth of available biological information, computational scientists now are beginning to develop quantitative models of biological systems that allow them to predict cellular behavior.

In one in silico experiment (via computer simulation) with E. coli, the researchers found that the deletion of one gene is lethal to the cell but when that same gene is removed along with other genes, it is not lethal. The gene, it turns out, is only essential in the presence of other genes. This touches the issue, says Motter, of whether organisms have an unconditional set of essential genes.

While Motter’s team has not done actual laboratory experiments, they have used their computational results to re-interpret and explain specific recent experimental results. They have applied physics methods to solve a biological problem. Their method, for example, can identify the genes whose removal restores growth in gene-deficient mutants of E. coli and S. cerevisiae, a type of yeast.

“From a phylogenetic viewpoint, yeast is more similar to humans than E. coli,” said Motter, a member of the Northwestern Institute on Complex Systems. “Of course, there is a distance between single-celled organisms and human cells, but our results should be seen as proof of principle. Many experimentalists are interested in our work, and part of this interest comes from its potential for disease treatment research. This work is a concrete application of complex networks to solve a real problem, and, as such, also requires substantial involvement of network theorists.”

“Needless to say, this work is built on previous research and would not have been possible without the very significant contribution of my collaborators,” said Motter.

Source: Northwestern University

Explore further: Results of glioblastoma clinical trial show safety and clinical benefit of CAR T cell therapy

Related Stories

Light can be utilized to control gene function

April 21, 2017

Light can be used as an accurate method to control gene expression, shows groundbreaking optogenetics study by University of Colorado, Duke University and University of Helsinki researchers.

Scientists discover gene that blocks spread of colon cancer

April 21, 2017

Researchers from RCSI (Royal College of Surgeons in Ireland) and the University of Nice, France, have discovered the function of a gene called KCNQ1 that is directly related to the survival of colon cancer patients. The ...

Genetic control of immune cell proliferation

April 19, 2017

Germinal centers are transient structures in the lymph nodes where antibody-producing B cells proliferate and differentiate at extraordinary rates. Germinal centers can be visually divided into a dark zone and light zone. ...

Recommended for you

Swarm explores a new feature of the northern lights

April 21, 2017

Thanks to social media and the power of citizen scientists chasing the northern lights, a new feature was discovered recently. Nobody knew what this strange ribbon of purple light was, so … it was called Steve.

New laser technique improves neutron yield

April 21, 2017

(Phys.org)—A team of researchers from several institutions in China has developed a new way to produce neutrons that they claim improves on conventional methods by a factor of 100. In their paper published in the journal ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

DGBEACH
5 / 5 (1) Mar 18, 2008
Pls excuse my ignorance here, this is not my field, but are they saying here that they ARE able to repair a mutated gene? Doesn't that mean they've found a cure for cancer??
MongHTan,PhD
not rated yet Mar 18, 2008
Pls excuse my ignorance here, this is not my field, but are they saying here that they ARE able to repair a mutated gene? Doesn't that mean they've found a cure for cancer??


No, the potential gene therapy in cancer would be much complicated than that. You might want to review the complexities in cancer treatments here: http://forum.phys...ic=20145&view=findpost&p=305284 .

Best of luck to your query!

Author "Decoding Scientism" (work in progress since July 2007).

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.