Modern microbialites may be endemic remnants of ancient ecosystems

March 17, 2008

Viruses and bacterial viruses (known as phages) are among the most abundant life forms on the planet. Two papers published recently in Nature, March 2 and 12, 2008, analyse the geographical distribution of viral communities in modern organosedimentary structures (sedimentary features, built by the interaction of organisms and their environment) known as microbialites, the living analogues of the oldest fossils on Earth, and come up with some surprising nuggets of information.

Microbialites first appeared in the geological record, 3.5 billion years ago, and for more than 2 billion years they are the main evidence of life on Earth. A team of scientists from US and Singapore used a comparative metagenomics approach to show that phages associated with such structures are very different not only from each other but also from those found in any other ecosystem so far. The team’s findings indicate that modern microbialites are endemic remnants of ancient ecosystems.

Dr Ruan Yijun, Senior Group Leader at the Genome Institute of Singapore (GIS), said, “Using DNA sequencing technology, we were able to identify unknown viruses in various environments relevant to human health. This collaboration is the first ever large-scale effort to analyse biodiversity and biogeography of viruses in the environments around humans.”

“We have been interested in this kind of analysis since the SARS (severe acute respiratory syndrome) outbreak in 2002,” added Dr Ruan. “In pursuit of this interest, we established a virus discovery programme at GIS, resulting in the discovery of abundant viruses in the human gut (PLoS Biology, 2006) and different variants of dengue viruses. Now, with more viral metagenomic data accumulated, we are able to summarise the biodiversity and biogeography on a global scale.”

Microbialites are organosedimentary structures accreted by sediment trapping, binding and in situ precipitation due to the growth and metabolic activities of microorganisms.

Stromatolites and thrombolites are morphological types of microbialites classified by
their internal mesostructure: layered and clotted, respectively.

Source: Agency for Science, Technology and Research, Singapore

Explore further: Biologists surprised to find parochial bacterial viruses

Related Stories

Biologists surprised to find parochial bacterial viruses

March 4, 2008

Biologists examining ecosystems similar to those that existed on Earth more than 3 billion years ago have made a surprising discovery: Viruses that infect bacteria are sometimes parochial and unrelated to their counterparts ...

What is life?

October 20, 2015

"Why would NASA want to study a lake in Canada?"

Stepping stones through time

October 5, 2010

Stromatolites are the most ancient fossils on Earth, and these structures built by microbes can still be found forming today in various places around the globe. Although they provide a straight line of life’s history ...

Recommended for you

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

May 26, 2017

On Oct. 13, 2014 something very strange happened to the camera aboard NASA's Lunar Reconnaissance Orbiter (LRO). The Lunar Reconnaissance Orbiter Camera (LROC), which normally produces beautifully clear images of the lunar ...

The high cost of communication among social bees

May 26, 2017

(Phys.org)—Eusocial insects are predominantly dependent on chemosensory communication to coordinate social organization and define group membership. As the social complexity of a species increases, individual members require ...

Conch shells spill the secret to their toughness

May 26, 2017

The shells of marine organisms take a beating from impacts due to storms and tides, rocky shores, and sharp-toothed predators. But as recent research has demonstrated, one type of shell stands out above all the others in ...

Toward mass-producible quantum computers

May 26, 2017

Quantum computers are experimental devices that offer large speedups on some computational problems. One promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.