'Lost' sediments show details of polar magnetic field

February 28, 2008

UC Davis researchers studying cores of sediment collected 40 years ago have found evidence for magnetic field vortices in the Earth's core beneath the South Pole. The results contrast with earlier studies at lower latitudes, and could lead to a better understanding of processes in the core.

The results came from a seabed sediment core collected by the U.S. Navy in the Antarctic Ross Sea in 1968 as part of Operation Deep Freeze. Samples from the core, covering almost 2.5 million years of the Earth's history, were stored at the Antarctic Marine Geology Research Facility in Tallahassee, Fla., before being re-discovered by Ken Verosub, professor of geology at UC Davis, who brought them back to Davis for magnetic analysis.

Exposed rock on land is weathered into fine grains that are washed out to sea and settle to the bottom. If the grains are magnetic, they will tend to align themselves with the Earth's magnetic field as they settle through the water column.

Verosub's lab uses highly sensitive equipment to measure the orientation of these magnetic grains in the sediments. That ancient magnetic record can be precisely dated by comparison to other rocks, and gives information about the behavior of the planet's magnetic field in the distant past.

"I think this is one of the best palaeomagnetic records yet from the Ross Sea," Verosub said.

Verosub, graduate student Luigi Jovane, postdoctoral researcher Gary Acton and Fabio Florindo at the National Institute for Geophysics and Vulcanology in Rome, Italy, found that there was more "scatter" in the magnetic directions than would be predicted, based on what is known about the Earth's magnetic field from cores collected closer to the equator.

But the results do compare well with recent computer simulations of fluid movement in the planet's core, which predict the existence of vortices in the magnetic field near the poles, Verosub said.

The paper is published online by the journal Earth and Planetary Science Letters, and will appear in the March 30 print edition of the journal.

Source: University of California - Davis

Explore further: The hidden mechanics of magnetic field reconnection, a key factor in solar storms and fusion energy reactors

Related Stories

Space radiation won't stop NASA's human exploration

October 13, 2017

While it's true that space radiation is one of the biggest challenges for a human journey to Mars, it's also true that NASA is developing technologies and countermeasures to ensure a safe and successful journey to the red ...

On the generation of solar spicules and Alfvenic waves

October 13, 2017

Combining computer observations and simulations, a new model shows that the presence of neutrals in the gas facilitates the magnetic fields to penetrate through the surface of the Sun producing the spicules. In this study, ...

First light for the PEPSI polarimeters

October 13, 2017

Thanks to a cleverly designed "two-in-one" instrument attached to the world's most powerful telescope, astronomers can extract more clues about the properties of distant stars or exoplanets than previously possible.

Recommended for you

New study finds nature is vital to beating climate change

October 16, 2017

Better stewardship of the land could have a bigger role in fighting climate change than previously thought, according to the most comprehensive assessment to date of how greenhouse gas emissions can be reduced and stored ...

Waves in lakes make waves in the Earth

October 16, 2017

Beneath the peaceful rolling waves of a lake is a rumble, imperceptible to all but seismometers, that ripples into the earth like the waves ripple along the shore.

Is it gonna blow? Measuring volcanic emissions from space

October 13, 2017

Late last month, a stratovolcano in Bali named Mount Agung began to smoke. Little earthquakes trembled beneath the mountain. Officials have since evacuated thousands of people to prevent what happened when Agung erupted in ...

Tracing subglacial water storage

October 13, 2017

Glaciers are essential to both human and animal health. In fact, 70 percent of the world's population consumes water that has some glacial input. It's important to understand how these icy giants operate, because they impact ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.