Killer Electrons Surf Celestial Tsunamis

February 26, 2008
Killer Electrons Surf Celestial Tsunamis
This is an artist's concept of the Van Allen radiation belts surrounding Earth. The blue, concentric shells represent the inner and outer belts. They completely encircle Earth, but have been cut away in this image to show detail. Credit: NASA Scientific Visualization Studio/Walt Feimer

It's as if we took a trip into space with our best friends, and they turned into mutants and attacked us. Electrons are the best friends we've ever had from the subatomic world. We harness their flow as electricity to power all of modern life -- everything from cell phones and laptops to light bulbs. In space, however, electrons can turn against us. Boosted to almost the speed of light, "killer electrons" can knock out computers, pierce spacesuits, and damage the tissues of astronauts. New research using NASA's STEREO spacecraft is discovering exactly how this happens.

Killer electrons lurk in the radiation belts surrounding Earth, called the Van Allen Belts after their discoverer, James Van Allen. Shaped like two concentric pumpkin shells around the Earth, the Van Allen Belts are areas where electrons and other electrically charged particles get trapped by Earth's magnetic field. Something happens there that turns ordinary electrons into high-speed demons.

Professor Cynthia Cattell of the University of Minnesota led a team that has found a likely culprit -- the most powerful radio waves of their kind ever detected in the Belts. "No one has ever seen waves this big," says Cattell. "They're more than 10 times bigger than what we knew about."

The waves studied by Cattell and her colleagues are known as whistlers, a special type of radio-frequency wave that has been known since World War I, when they were discovered to be generated by lightning.

The newly found whistlers have a lot in common with the ocean waves off Waikiki Beach. Both pick up surfers--whether people or electrons--and transfer energy to them. Electrons that absorb enough energy from whistlers can hurtle along at up to 99 percent the speed of light, which translates to 184,000 miles per second.

The most startling revelation was how fast it happens. It had been thought that multiple interactions between whistlers and electrons, taking place over a span of minutes or even tens of hours, were necessary.

"But we saw that electrons can be energized in a tenth of a second," says Cattell.

The key to the discovery lay in a couple of identical instruments designed by Keith Goetz, a physicist at the University of Minnesota. They are aboard the twin spacecraft of NASA's STEREO (Solar TErrestrial RElations Observatory) mission, one orbiting the sun ahead of Earth and the other orbiting behind. The idea is to use the widely separated spacecraft to study the sun in 3-D.

The focus of Goetz's instrument -- called TDS, for time-domain sampler--is waves in the solar wind, a stream of charged particles flowing from the sun. The TDS's were intended to collect data after the two STEREO spacecraft had settled into their respective orbits. But that didn't stop Goetz from insisting that they be turned on early, when the two orbiters were still near Earth.

And so they were. And thus the antennas of the TDS were ready on December 12, 2006, when the big break came.

On that day the two spacecraft sailed through the Outer Van Allen Belt in tandem, one about 84 minutes behind the other. During that short interval, the Outer Belt was hit by a "magnetospheric substorm," an explosive release of energy from Earth's magnetic field. The substorm stirred up the massive whistlers, which were detected by the second STEREO spacecraft.

STEREO was launched in October 2006. STEREO is sponsored by NASA’s Science Mission Directorate, Washington, D.C. NASA Goddard Space Flight Center’s Solar Terrestrial Probes Program Office, in Greenbelt, Md., manages the mission, instruments and science center. The Johns Hopkins University Applied Physics Laboratory, in Laurel, Md., designed, built and operates the twin observatories for NASA during the 2-year mission.

Source: by Deane Morrison / Bill Steigerwald, University of Minnesota / NASA's Goddard Space Flight Center

Explore further: To catch a wave, rocket launches from top of world

Related Stories

To catch a wave, rocket launches from top of world

January 28, 2019

On Jan. 4, 2019, at 4:37 a.m. EST the CAPER-2 mission launched from the Andøya Space Center in Andenes, Norway, on a 4-stage Black Brant XII sounding rocket. Reaching an apogee of 480 miles high before splashing down in ...

Scientists explain formation of lunar dust clouds

January 25, 2019

Physicists from the Higher School of Economics and Space Research Institute have identified a mechanism explaining the appearance of two dusty plasma clouds resulting from a meteoroid that impacted the surface of the moon. ...

A new way to create Saturn's radiation belts

November 29, 2018

A team of international scientists from BAS, University of Iowa and GFZ German Research Centre for Geosciences has discovered a new method to explain how radiation belts are formed around the planet Saturn.

Preparing for discovery with NASA's Parker Solar Probe

December 13, 2018

Weeks after Parker Solar Probe made the closest-ever approach to a star, the science data from the first solar encounter is just making its way into the hands of the mission's scientists. It's a moment many in the field have ...

Recommended for you

Female golden snub-nosed monkeys share nursing of young

February 21, 2019

An international team of researchers including The University of Western Australia and China's Central South University of Forestry and Technology has discovered that female golden snub-nosed monkeys in China are happy to ...

When does one of the central ideas in economics work?

February 20, 2019

The concept of equilibrium is one of the most central ideas in economics. It is one of the core assumptions in the vast majority of economic models, including models used by policymakers on issues ranging from monetary policy ...

In colliding galaxies, a pipsqueak shines bright

February 20, 2019

In the nearby Whirlpool galaxy and its companion galaxy, M51b, two supermassive black holes heat up and devour surrounding material. These two monsters should be the most luminous X-ray sources in sight, but a new study using ...

Research reveals why the zebra got its stripes

February 20, 2019

Why do zebras have stripes? A study published in PLOS ONE today takes us another step closer to answering this puzzling question and to understanding how stripes actually work.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
not rated yet Feb 27, 2008
Zevkirsh,

Check this out. Paper published at AIAA and AAAF
conferences on future propulsion.

Electron Linear Porpulsion

http://nlspropuls...cept.pdf

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.