Scientists create darkest material

A scientist at a Houston university has created the darkest known material -- about four times darker than the previous record holder.

Pulickel Ajayan, a professor of engineering at Rice University, created a carpet of carbon nanotubes that reflects 0.045 percent light, making it 100 times darker than a black-painted Corvette, the Houston Chronicle reported Monday.


Please, read the following story for pictures and more details on this research: www.physorg.com/news120227809.html>
"The final numbers, when we measured how dark this material was, were more dramatic than we thought," Ajayan said.

Ajayan said the material, which has been submitted to the Guinness Book of World Records, may have some practical applications. He said the material's ability to absorb light could be beneficial to solar panels and it also minimizes the scattering of light, making it a potential boon to telescope manufacturers.

The previous darkest known material, a nickel and phosphorus alloy created by scientists in London, reflected about 0.16 percent of light.

Copyright 2008 by United Press International


Explore further

Measles: Why it's so deadly, and why vaccination is so vital

Citation: Scientists create darkest material (2008, January 14) retrieved 25 May 2019 from https://phys.org/news/2008-01-scientists-darkest-material.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Jan 14, 2008
Black Corvettes literally only reflect 4.5 percent of light?! Talk about hot cars indeed.

Ok, so black (dark) materials absorb visible, uv and convert it to infrared? I'd guess some radio too? A spectrum barrier of sorts?

Jan 15, 2008
Hmmmm.... possibilities for solar cells?

Jan 15, 2008
If it works for the visible spectrum, it would seem that with some modifications of the nanotube structure it could also absorb other frequencies. This could be utilized in UV and IR (very close in frequency) counter measures as well as provide isolation on higher frequency transmission antennas, such as L-Band (not so close in frequecy, so the physical size may not be practical).

Jan 15, 2008
drop the spectrum enough amd it a RADAR absorbing material... making it invisible...

Also it could absorb laser light, also making it un-tractable to laser-guided devices,

Jan 15, 2008
Goths are rejoycing! Just kidding, it will be great for optics since it'll cut down on scattering of stray light and improve contrast.

Jan 15, 2008
Where does the photon energy go and what is the physics model?
Is it a case of the frequency of the photon resonating with the outer electrons in the material and being transmuted 100% into thermal energy. Or is the photoelectric effect however as the material has high resistance so electric potential generates heat. Where do the photons go and by what process?

Jan 15, 2008
What am I going to do, not comment on this!? That is awesome!

Jan 15, 2008
The photons get absorbed (by the electron), the electrons jump to a higher energy state, then drop back down and emit a lower frequency photon, the loss in energy translates into heating of the molecule. The wider the range of frequencies the molecule absorbs, the more energy it will end up absorbing as heat.

The photo electric effect actually frees the electron so it creates a positive charge on the surface of the material. The ability to eject an electron is determined by the frequency of the photon, not the number of photons. Brighter light just heats the material more, it doesn't cause a charge. Most materials won't start ejecting electrons until frequencies hit the x-ray range.

Jan 15, 2008
It can't be as dark as priests socks.

Jan 15, 2008
if the nano tubes are perpendicular to the surface, like strands of a carpet. It could work like a camera or an eye, light goes into a small hole of a black cavity and very little comes back out.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more