Insects' 'giant leap' reconstructed by founder of sociobiology

January 2, 2008

A survey of advanced social organization in insects calls into question the standard explanation for eusociality
The January 2008 issue of BioScience includes an article by biologist Edward O. Wilson that argues for a new perspective on the evolution of advanced social organization in some ants, bees, and wasps (Hymenoptera).

Wilson’s article surveys recent evidence that the high level of social organization called “eusociality,” found in some Hymenoptera (and rarely in other species), is a result of natural selection on nascent colonies of species possessing features that predispose them to colonial life. Wilson concludes that these features, principally progressive provisioning of larvae and behavioral flexibility that leads to division of labor, allow some species to evolve colonies that are maintained and defended because of their proximity to food sources.

Eusociality is a challenge for biologists to understand because worker castes in eusocial species forgo individual reproduction but rear young that are not their own, a behavior that biologists label altruistic. Wilson’s current view about eusociality differs from the assessment in his seminal book Sociobiology: The New Synthesis (1975). According to that widely accepted earlier account, selection acting on individuals that are related (kin selection), rather than on whole colonies, explains eusociality in Hymenoptera. Kin selection is thought to be especially powerful in these animals because of an unusual genetic system, known as haplodiploidy, that they share.

Wilson’s survey in BioScience, which examines the findings of a number of researchers, points out aspects of the occurrence of eusociality that the standard explanation has difficulty accounting for. Eusociality has evolved only a few times, and not all of them were in haplodiploid species. Furthermore, the great majority of haplodiploid species are not eusocial. Wilson holds that selection acting on traits that emerge at a group level provides a more complete explanation for eusociality’s rare instances than kin selection. Kin selection is, he writes, “not wrong” but incomplete.


Source: American Institute of Biological Sciences

Explore further: Why biodiversity is key to our survival

Related Stories

Why biodiversity is key to our survival

December 7, 2018

Diversity, be it genetic, morphological, behavioural or ecological, is at the heart of many controversies. It fascinates us or worries us, depending on the context. But what is biological diversity? How useful is it, how ...

The science of selflessness

April 16, 2012

In a talk at the Geological Lecture Hall on Thursday, Harvard biologist E.O. Wilson outlined new thinking on how human social behavior evolved, saying that it was competition among groups of humans — made up of both ...

Recommended for you

Self-healing electroluminescent (EL) devices

December 19, 2018

In a recent study, materials scientists Guojin Liang and his coworkers at the Department of Materials Science and Engineering, City University of Hong Kong, have developed a self-healing, electroluminescent (EL) device that ...

Astronomers discover nine new variable stars

December 19, 2018

A team of astronomers from Chile has detected nine new variable stars in the globular cluster NGC 6652 and its background stream. Six of the newly found stars were classified as eclipsing binaries, one as an SX Phoenicis ...

Study shows women lower their voice when competing for a man

December 19, 2018

A team of researchers with members from the U.K., Poland and Germany has found that women tend to lower their voices when competing sexually for a man. In their paper published in Proceedings of the Royal Society B, the group ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.