Active mechanism locks in the size of a cell's nucleus

December 24, 2007

Cells know that size matters, especially when it comes to the nucleus. In the early 1900s, German scientists first proposed that the size of a nucleus is always proportional to the size of its cell. Now, more than a century later, researchers at Rockefeller University show that an active mechanism controls this process. This mechanism, however, doesn’t reside within the nucleus as many once thought, but instead comes from the cell’s cytoplasm.

In a series of experiments, coauthor Frank Neumann, together with Paul Nurse, head of the Laboratory of Yeast Genetics and Cell Biology, found that regardless of the size or shape of fission yeast, the volume of its nucleus hovers around eight percent — a volume that not only remains constant throughout development, but also resists change, in a wide range of experimental and natural conditions. These findings, which appear in the November 19 issue of the Journal of Cell Biology, raise the question of why cells keep such close tabs on the size and shape of their nuclei.

To test whether the amount of DNA influences the nucleus’s size, Neumann and Nurse genetically manipulated the fission yeast so that the amount of DNA within the nucleus doubled with each cell cycle without the nucleus ever dividing. Nuclei with as much as 32 times more DNA than other nuclei maintained the same nucleus-to-cell ratio, a finding that dispelled the theory that it is the amount of DNA and how tightly it is packed that determines the nucleus’s size. “This was perhaps our most surprising finding,” says Neumann, “that DNA is not what is measured to determine nuclear size.” The researchers also found that fission yeast do not measure cell length to lock in this nucleus-to-cell ratio.

Rather, Neumann and Nurse show that it’s what’s outside the nucleus — not inside it — that determines the size of the nucleus. This time, they confirmed this finding not by doubling the amount of DNA within the nucleus, but the number of nuclei within the fission yeast — single-cell organisms that look like long, straight rods. In this experiment, each cell had four unevenly distributed nuclei.

During cell growth, the volume of each nucleus became directly proportional to the amount of “surrounding” cytoplasm. Particularly, the two nuclei at the ends of the rods, which were surrounded by relatively more cytoplasm, grew faster than the two nuclei between them. When Neumann and Nurse repositioned nuclei to areas with relatively more cytoplasm, the previously small nuclei grew faster than the others until the proper ratio was achieved.

The researchers saw the same results when they genetically modified the multi-nucleated cells to sprout an arm. The nuclei that were close to this junction increased in size since the relative amount of cytoplasm had now increased. Taken together, these experiments suggest that components within the cytoplasm, not DNA content of the nucleus, play an important role in nuclear size control.

When Neumann and Nurse modified the fission yeast cells such that nuclei occupied two times more of the cell volume, the nuclei didn’t shrink but “waited” until the cell became sufficiently large before they started to grow.

Likewise, a nucleus that occupied less than eight percent of the cell’s volume grew faster than it would have had its nucleus-to-cell ratio not been modified, suggesting that nuclear growth is not directly coupled to cell growth; rather, the nucleus can sense changes to the ratio and adjust its growth accordingly. “These findings provide the first hint of a mechanism and are the basis of uncovering the molecular mechanism of how a cell senses its nucleus’s size,” says Neumann.

Citation: Journal of Cell Biology 179(4): 593–600 (November 2007)

Source: Rockefeller University

Explore further: Single-nucleus RNA sequencing, droplet by droplet

Related Stories

Single-nucleus RNA sequencing, droplet by droplet

August 28, 2017

Last year Broad researchers described a single-nucleus RNA sequencing method called sNuc-Seq. This system enabled researchers to study the gene expression profiles of difficult-to-isolate cell types as well as cells from ...

Chromosome mechanics guide nuclear assembly

August 28, 2017

Every one of our cells stores its genome within the nucleus – the quintessential subcellular structure that distinguishes eukaryotic cells from bacteria. When animal cells divide, they disassemble their nucleus, releasing ...

From strands to droplets—new insights into DNA control

June 23, 2017

A host of proteins and other molecules sit on the strands of our DNA, controlling which genes are read out and used by cells and which remain silent. This aggregation of genetic material and controlling molecules, called ...

Recommended for you

Barn owls found to suffer no hearing loss as they age

September 20, 2017

(Phys.org)—A small team of researchers with the University of Oldenburg has found that barn owls do not suffer hearing loss as they get older. In their paper published in Proceedings of the Royal Society B, the group describes ...

Ageing star blows off smoky bubble

September 20, 2017

Astronomers have used ALMA to capture a strikingly beautiful view of a delicate bubble of expelled material around the exotic red star U Antliae. These observations will help astronomers to better understand how stars evolve ...

Bats anticipate optimal weather conditions

September 20, 2017

Millions of animals fly, swim or walk around the Earth every year. To ensure that they reach their destination, they need to perceive precise changes in environmental conditions and choose the right moment to set off on their ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.