'Heftier' atoms reduce friction at the nanoscale

November 1, 2007

A research team led by a University of Pennsylvania mechanical engineer has discovered that friction between two sliding bodies can be reduced at the molecular, or nanoscale, level by changing the mass of the atoms at the surface. “Heavier” atoms vibrate at a lower frequency, reducing energy lost during sliding.

The study appears in the November issue of the journal Science.

Penn researchers, along with colleagues at the University of Houston and the University of Wisconsin now at IBM’s Zurich Research Laboratory and the Argonne National Laboratory, used atomic force microscopy like an old-fashioned record needle, sliding it along single-crystal diamond and silicon surfaces to measure the force of friction.

Before doing so, researchers coated each crystal surface with one of two adsorbates designed to best exhibit variations in the mass of the atoms at the surface without changing the chemistry. The first adsorbate was a single layer of hydrogen atoms. The second was its chemically similar but heavier cousin, deuterium, a hydrogen atom with a neutron stuffed inside its nucleus.

“Our study found that the larger mass of the terminating atoms at the surface, in this case deuterium, led to less energy lost to heat in the system,” Robert Carpick, associate professor of mechanical engineering and applied mechanics at Penn, said. “The larger atomic mass of deuterium results in a lower natural vibration frequency of the atoms. These atoms collide less frequently with the tip sliding over it, and thus energy is more slowly dissipated away from the contact.”

The single layer of atoms at the surface of each crystal acts as an energy transfer medium, absorbing kinetic energy from the tip of the atomic force microscope. The tips were less than 50nm in radius at their ends. How much energy is absorbed is dependent, researchers found, on the adsorbates’ natural atomic vibration frequencies. The heavier an atom, the lower its vibrational frequency. The lighter an atom, the faster the vibrations and thus the faster the dissipation of energy from the contact in the sample. Keeping the atoms chemically similar avoided any changes arising from chemical bonding.

The Penn findings provide a better understanding of the nature of friction, which lacks a comprehensive model at the fundamental level.

“We know how some properties -- adhesion, roughness and material stiffness for example -- contribute to friction over several length scales, but this work reveals how truly atomic-scale phenomena can and do play a meaningful role,” Matthew Brukman, a contributor to the research, said.

Industry has long been concerned with ways to reduce friction between objects, both to maintain the energy of the system as well as to reduce heat-generation and wear, which can weaken machinery and materials to the breaking point. The authors note that improved friction models can be used for the opposite effect; makers of some mechanical components such as automobile clutches may be interested in techniques to increase friction without changing the wear or adhesion of materials.

Even in the absence of rough edges or wear between sliding bodies, friction between the atoms at the surface causes vibrations which dissipate energy, but the exact mechanisms of this process remain unresolved. Scientists continue to explore the details of friction, and other open questions include the effects of environmental variables such as temperature and atmosphere.

Source: University of Pennsylvania

Explore further: Friction in the vacuum?

Related Stories

Friction in the vacuum?

February 20, 2017

(Phys.org)—When three physicists first discovered through their calculations that a decaying atom moving through the vacuum experiences a friction-like force, they were highly suspicious. The results seemed to go against ...

Researchers obtain supersolidity state experimentally

March 2, 2017

When matter is cooled to near absolute zero, intriguing phenomena emerge. These include supersolidity, where crystalline structure and frictionless flow occur together. ETH researchers have succeeded in realising this strange ...

Researchers align atomic friction experiment

June 24, 2015

Working together to study friction on the atomic scale, researchers at UC Merced and the University of Pennsylvania have conducted the first atomic-scale experiments and simulations of friction at overlapping speeds.

Recommended for you

Controlling ice formation

March 24, 2017

(Phys.org)—Researchers have demonstrated that ice crystals will grow along straight lines in a controlled way on microgrooved surfaces. Compared to the random formation of ice crystals on smooth surfaces, the ice on the ...

Artificial photosynthesis steps into the light

March 23, 2017

Rice University scientists have created an efficient, simple-to-manufacture oxygen-evolution catalyst that pairs well with semiconductors for solar water splitting, the conversion of solar energy to chemical energy in the ...

Chemical reactions 'filmed' at the single-molecule level

March 22, 2017

Scientists have succeeded in 'filming' inter-molecular chemical reactions – using the electron beam of a transmission electron microscope (TEM) as a stop-frame imaging tool. They have also discovered that the electron beam ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.