Nano-coatings grease earthquake zones

October 31, 2007

Samples of rock from deep inside the San Andreas Fault could shake up scientists' notions about why some fault zones move slowly and steadily while others balk for a time and then shift suddenly and violently, producing major earthquakes.

'There's been strong interest in finding signatures in rocks that would characterize a fault as creeping or seismic,' said University of Michigan geological sciences professor Ben van der Pluijm, who will discuss recent findings today (Oct. 30) in a symposium during the 119th annual meeting of the Geological Society of America in Denver.

Some scientists have speculated that fluids facilitate slippage; others have focused on bits of serpentine—a greenish mineral that can crystallize as slippery talc under certain conditions—which were found in core samples retrieved from the San Andreas Fault.

But van der Pluijm and coworkers at U-M and the University of Strasbourg in France aren't convinced of those explanations for slippery fault behavior. 'We think the answer is in clay,' he said.

He bases his opinion on analyses of material brought up from a depth of two miles below the fault's surface as part of the San Andreas Fault Observatory at Depth (SAFOD) project. SAFOD, which is establishing the world's first underground earthquake observatory, is a major research component of EarthScope, an ambitious, $197-million federal program to investigate the forces that shape the North American continent and the physical processes controlling earthquakes and volcanic eruptions.

Earth scientists are especially interested in the San Andreas Fault—that notorious fracture running 800 miles along the length of California—because major earthquakes occur on such plate boundaries. The SAFOD site, near Parkfield, Calif., sits on a creeping section of the fault that moves regularly and incrementally, but does not produce large earthquakes.

Van der Pluijm's samples are 'not glamorous to look at. They're not spectacular to showcase; they just look like dirt.' But it's how the 'dirt' forms and behaves in active fault zones that makes it noteworthy. Through a combination of chemical and mechanical processes, the grains making up the rock develop 'nano-coatings' of clay on their surfaces, which act something like grease on ball bearings.

'We can show that these nano-coatings, which are only a few hundred nanometers thick, occur all around broken-up, fractured grains, and they occur exactly in the places where they can affect the 'weakness' of the fault,'—how easily it moves. We think that as these grains move past one another, the coatings facilitate the displacement.'

By dating the first suite of samples collected in 2005, the researchers show that these coatings are relatively recent. 'They form in actively creeping fault zones,' van der Pluijm said, 'creating a dynamic environment where rocks change while faulting occurs,' Finding signatures that reveal whether a fault is creeping or seismic won't immediately aid in earthquake prediction, van der Pluijm said. 'But it will help us understand what processes govern this behavior.'

Source: University of Michigan

Explore further: Drilling into an active earthquake fault in New Zealand

Related Stories

Drilling into an active earthquake fault in New Zealand

September 24, 2014

Three University of Michigan geologists are participating in an international effort to drill nearly a mile beneath the surface of New Zealand this fall to bring back rock samples from an active fault known to generate major ...

Tiny clays curb big earthquakes

June 24, 2010

California's San Andreas fault is notorious for repeatedly generating major earthquakes and for being on the brink of producing the next "big one" in a heavily populated area. But the famously violent fault also has quieter ...

Seeing through the cracks

March 23, 2011

While rescue workers in Japan continue their search for missing persons amid the rubble in Sendai and beyond, geologists are sifting through seismic data and satellite images for hints to what caused one of the most catastrophic ...

Explained: Measuring earthquakes

May 10, 2011

The powerful earthquake that struck Japan in March was a 9.0-magnitude event. But this was not, as some people may assume, as registered on the Richter scale, the famed measuring system dating to the 1930s. Seismologists ...

Recommended for you

Mysterious deep-Earth seismic signature explained

November 22, 2017

New research on oxygen and iron chemistry under the extreme conditions found deep inside the Earth could explain a longstanding seismic mystery called ultralow velocity zones. Published in Nature, the findings could have ...

Scientists dispute missing dryland forests

November 21, 2017

Scientists are disputing the possibility that a significant portion of the world's forests have been missed in an earlier accounting of ecological diversity.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.