Carbon Dioxide Underground Storage Feasible Using 'Off-the-Shelf' Technology from Oil Industry

September 27, 2007
Carbon Dioxide Underground Storage Feasible Using 'Off-the-Shelf' Technology from Oil Industry
Dr. Steven Bryant, associate professor of petroleum and geosystems engineering, holds two halves of a fractured sample of wellbore cement. Confining the two halves together at pressures similar to those in formations deep below the Earth's surface provides a laboratory model of one type of pathway conceivably allowing carbon dioxide to escape the storage formation. Photo: Erin McCarley

Despite the sobering amount of carbon dioxide needing storage to reduce greenhouse gases, funneling the offensive chemical underground remains technologically possible for the oil industry, says Dr. Steven Bryant, associate professor of petroleum and geosystems engineering at The University of Texas at Austin.

His feasibility study proving the capability and documenting the technical requirements for storing carbon dioxide underground, as well as the parallels to current processes within the oil industry, appears in the September issue of the Journal of Petroleum Technology.

"The oil industry has decades of experience moving large amounts of gas underground and above ground," Bryant said. "In fact, capturing carbon dioxide from fixed sources, such as coal-fired and gas-fired power plants, and injecting it into geological formations mimics many of the processes already undertaken to produce fossil fuels."

Few other industries deal with fluid volumes of this size, he said. The industry could respond with an 'off-the-shelf' geological-storage service in a short time—a key advantage given the urgency of the problem.

"This is not to dismiss the very real difficulty of finding and developing the financial and human resources for such an enterprise, nor of building the necessary infrastructure," he said.

Now in his fourth year of investigating the key physical processes associated with sequestering carbon dioxide, Bryant has found that injecting carbon dioxide into formations deep within the Earth's crust is one of the few technologies that can be implemented rapidly enough and at a large-enough scale to mitigate greenhouse gas emissions. He directs the Geologic CO2 Storage Joint Industry Project in the Center for Petroleum and Geosystems Engineering.

Bryant's research was featured in the Special Report on Carbon Dioxide Capture and Storage released by the Intergovernmental Panel on Climate Change in spring 2007. The panel highlighted his findings for the "inject low and let rise" strategy of maximizing the secure, long-term immobilization of stored carbon dioxide.

"But doing this is going to require society—industry, government, consumers—to make a tremendous investment of resources, both financial and human," he said. "This challenge motivates the current goals of our Joint Industry Project: to train a new breed of 'carbon management engineers' to design, construct, operate, optimize and regulate large-scale carbon dioxide sequestration projects, and to carry out research that makes this technology as cost-effective and routine as possible."

Nevertheless, Bryant remains realistic about the prospects for his industry to create clean air.

"The public perception of the 'fairness' of the industry's role in geologic storage may distort or even overwhelm a rational evaluation of the challenges," he noted in the report. "Although it provides more than half of the energy needed to fuel the global economy, the oil and gas industry has never garnered much public sympathy for its efforts. Ironically, being uniquely qualified to help save the planet may not improve the industry's image."

Source: University of Texas at Austin

Explore further: NASA selects proposals for first-ever space technology research institutes

Related Stories

Extending VCSEL wavelength coverage to the mid-infrared

February 14, 2017

Vertical-cavity surface-emitting lasers (VCSELs) are small, semiconductor-based lasers that emit optical beams from their top surface, and one of their main applications is in gas sensing. Gases each have a unique set of ...

First Israeli nanosatellite for academic research launched

February 16, 2017

"BGUSAT," the first nanosatellite for Israeli academic research, is being launched today as part of a collaboration between Ben-Gurion University of the Negev (BGU), Israel Aerospace Industries (IAI) and the Israel Ministry ...

Recommended for you

Smartphones are revolutionizing medicine

February 18, 2017

Smartphones are revolutionizing the diagnosis and treatment of illnesses, thanks to add-ons and apps that make their ubiquitous small screens into medical devices, researchers say.

Six-legged robots faster than nature-inspired gait

February 17, 2017

When vertebrates run, their legs exhibit minimal contact with the ground. But insects are different. These six-legged creatures run fastest using a three-legged, or "tripod" gait where they have three legs on the ground at ...

Big improvements to brain-computer interface

February 16, 2017

When people suffer spinal cord injuries and lose mobility in their limbs, it's a neural signal processing problem. The brain can still send clear electrical impulses and the limbs can still receive them, but the signal gets ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Pieter_Pietersen
not rated yet Dec 05, 2007
With sarcastic voice:
"one wonders where this mistrust of the oil-industry comes from"

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.