UK satellite mission to improve accuracy of climate-change measurements gains global support

August 17, 2007

TRUTHS (Traceable Radiometry Underpinning Terrestrial- and Helio- Studies) is a proposed satellite mission, led by the National Physical Laboratory, to improve tenfold the accuracy of earth observation satellites used to deliver climate change data.

TRUTHS will launch a calibration laboratory into space to help settle international debates around climate change and provide a robust statistical baseline from which to monitor and predict changes in the Earth’s climate. Enabling the provision of data of sufficient accuracy to improve the predictive quality of climate models such as those of the UK Hadley centre a key requirement highlighted in the Stern review.

Since its initial proposal more than five years ago TRUTHS has been seeking the level of financial support required to convert it from theory to a fully-fledged satellite mission. Recent reports from the United Nations, the World Meteorological Organisation and the US Academy of Sciences all call for a spaceflight mission designed to achieve exactly what TRUTHS was established to deliver. The latter has even recommended such a mission as one of the four priorities for US spaceflight by 2013.

“We’ve seen a recent surge in recognition around the world that we need more accurate data about our climate,” explains Dr Nigel Fox, NPL’s lead scientist on TRUTHS. “This can only be good news. With so many influential organisations calling for a TRUTHS-like mission we hope to be moving from scientific theory to spaceflight very soon.”

Why is TRUTHS important?

Assessments of climate change and the consequential scale of its impact depend on accurate data from scores of earth observation satellites. They ought to provide unequivocal evidence to support national and international legislation. But most earth observation data is disputable.

“We just don’t know if the instruments are really accurate enough once they’ve been in space for a couple of years,” Fox says. “What we do know is they all seem to produce slightly different results, and that gives a lot of unnecessary wriggle room to those who dispute the evidence for human origins of climate change. The uncertainty of the data allows the sceptics to exist.”

The problem lies with calibration. Delicate measuring devices on earth – those used in medical and high-tech industries, for example – are regularly calibrated against primary physical standards held by national measurement institutes such as NPL. Instruments in space don’t have this luxury. They are finely tuned before they leave the earth. “But after that we just don’t know,” Dr Fox says. “Even if these sensitive instruments survive the violence of a rocket launch, their sensitivity changes over time. But we don’t really know by how much.” It’s not logistically or financially viable to bring these instruments back down to earth for a service every few months. “They can’t come to us so we’ll sort it out in orbit,” says Dr Fox.

The idea is for TRUTHS to be a master device in orbit, against which other earth observation satellites are tested and calibrated. That ensures they will all be working off the same measurement benchmark. It also reduces costs – a central orbiting reference point means each individual satellite doesn’t need to be equipped with its own individual suite of calibration tools.

Although the needs of climate science are perhaps the most demanding in terms of accuracy, such a mission would also serve as a reference to underpin the quality of data that is being generated and processed as part of the European GMES initiative and also that of GEO.

Source: National Physical Laboratory

Explore further: Researchers investigate the ocean's deep biosphere

Related Stories

Researchers investigate the ocean's deep biosphere

April 24, 2017

Bundled in layers of blankets for warmth, Laura Zinke settled in for a two-hour ride to the bottom of the ocean. The temperature dipped significantly once she and her colleagues passed the depth still touched by sunlight, ...

Climate change is turning dehydration into a deadly epidemic

April 18, 2017

By 10am in the sugarcane fields outside the town of Tierra Blanca in El Salvador, the mercury is already pushing 31°C. The workers arrived at dawn: men and women, young and old, wearing thick jeans, long-sleeved shirts and ...

Storm-scanning satellites enter operations phase

April 3, 2017

NASA's Cyclone Global Navigation Satellite System (CYGNSS) mission has successfully completed its development and commissioning phase and moved into the operations phase. The constellation of eight microsatellites—the first ...

Recommended for you

New survey hints at exotic origin for the Cold Spot

April 25, 2017

A supervoid is unlikely to explain a 'Cold Spot' in the cosmic microwave background, according to the results of a new survey, leaving room for exotic explanations like a collision between universes. The researchers, led ...

Astronomers detect dozens of new quasars and galaxies

April 25, 2017

(Phys.org)—A team of astronomers led by Yoshiki Matsuoka of the National Astronomical Observatory of Japan (NAOJ) has detected a treasure trove of new high-redshift quasars (or quasi-stellar objects) and luminous galaxies. ...

Team discovers lull in Mars' giant impact history

April 25, 2017

From the earliest days of our solar system's history, collisions between astronomical objects have shaped the planets and changed the course of their evolution. Studying the early bombardment history of Mars, scientists at ...

Preliminary results of Breakthrough Listen project released

April 25, 2017

(Phys.org)—The team of researchers working on the Breakthrough Listen project (affiliated with SETI) has released preliminary findings after sifting through several petabytes of data obtained from three telescopes involved ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.