New Clues to Mechanism for Colossal Mangetoresistance

August 17, 2007
New Clues to Mechanism for Colossal Mangetoresistance
The method: Scientists used an electron probe (green) to make images and collect other data while using a scanning tunneling microscope tip (red) to apply current or an electric field to the sample. The first layered image of black lines shows polaron waves, which propagate during the application of the current. Fine dots in the second layer are the individual atoms, while the periodic dot-clusters show the electron ordered state. The graph of electron energy loss spectroscopy (EELS) reveals bonding-electron excitation. The bottom layer is a structural model of the crystal lattice. And the vertical graph shows the electric resistance (I-V curve) of the crystal when current is applied. Credit: BNL

Experiments at the U.S. Department of Energy's Brookhaven National Laboratory shed new light on some materials' ability to dramatically change their electrical resistance in the presence of an external magnetic or electric field. Small changes in resistance underlie many electronic devices, including some computer data storage systems.

Understanding and applying dramatic resistance changes, known as colossal magnetoresistance, offers tremendous opportunities for the development of new technologies, including data-storage devices with increased data density and reduced power requirements.

"This is an extremely important piece of work with broad potential application in developing the next generation of electronic and data-storage devices," said Brookhaven physicist Yimei Zhu, one of the lead authors on a paper appearing in the August 21, 2007 Proceedings of the National Academy of Sciences, now available online.

The Brookhaven scientists were studying crystalline perovskite manganites that had been doped with extra charge carriers - electrons or "holes" (the absence of electrons) - using various state-of-the-art electron microscopy techniques. In an unprecedented experiment, the scientists used a scanning-tunneling microscope that was built inside an electron microscope to apply an electric stimulus to the sample while observing its response at the atomic scale.

Using this technique, the scientists obtained, for the first time, direct evidence that a small electric stimulus can distort the shape of the crystal lattice, and also cause changes in the way charges travel through the lattice. The lattice distortions accompanied the charge carrier as it moved through the lattice, producing a particle-like excitation called a polaron. "Polarons can be pictured as a charge carrier surrounded by a 'cloth' of the accompanying lattice vibrations," Zhu said.

Zhu's group observed polarons melting and reordering - that is, undergoing a transition from solid to liquid to solid again - in response to the applied current, which the scientists have identified as the key mechanism for colossal mangetoresistance. The technique also allowed the scientists to study polaron behavior, i.e., how variations in electric field, current, and temperature affected this transition.

"We show that static long-range ordering of polarons forms a polaron solid, which represents a new type of charge and orbital ordered state," said Zhu. "The related lattice distortions connect this phenomenon to colossal resistance effects, and suggest ways of modifying charge density and electronic interactions at the vicinity of electric interfaces and electrodes."

Colossal resistance effects could result in miniaturization of electric circuits that operate at lower power. This work therefore has direct impact on the application of these materials in the development of new electronic and spintronic devices (devices that use 'a combination of electron spin and charge). Such devices include new forms of "nonvolatile" computer memory (memory that can retain stored information even when not powered) such as resistive random access memory (RRAM).

This work was done in collaboration with Christian Jooss, a Brookhaven visiting scientist, and colleagues from the University of Goettingen, Germany. The work was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science and by the German Research Foundation.

Source: Brookhaven National Laboratory

Explore further: Researchers develop solid-state, free-standing carbon nanofiber supercapacitor

Related Stories

New life for aging scooter batteries

September 18, 2017

What can we do with aging scooter batteries? Instead of scrapping them and recycling their components, the batteries could be left intact and re-used in a solar power storage cabinet. This is precisely what a pilot project ...

New approach boosts performance in thermoelectric materials

September 18, 2017

Thermoelectric materials are considered a key resource for the future - able to produce electricity from sources of heat that would otherwise go to waste, from power plants, vehicle tailpipes and elsewhere, without generating ...

Bringing harmony to discord in the IoT world

September 19, 2017

Billions of devices are connected to wireless networks all over the globe, and because of the Internet of Things (IoT), they're starting to communicate with each other and the cloud now more than ever. Today, some of our ...

Integrated high-speed data and wireless power transfer

September 18, 2017

Researchers from North Carolina State University have developed a system that can simultaneously deliver watts of power and transmit data at rates high enough to stream video over the same wireless connection. By integrating ...

Recommended for you

Gravitational waves may oscillate, just like neutrinos

September 21, 2017

(Phys.org)—Using data from the first-ever gravitational waves detected last year, along with a theoretical analysis, physicists have shown that gravitational waves may oscillate between two different forms called "g" and ...

Detecting cosmic rays from a galaxy far, far away

September 21, 2017

In an article published today in the journal Science, the Pierre Auger Collaboration has definitively answered the question of whether cosmic particles from outside the Milky Way Galaxy. The article, titled "Observation of ...

New technique accurately digitizes transparent objects

September 21, 2017

A new imaging technique makes it possible to precisely digitize clear objects and their surroundings, an achievement that has eluded current state-of-the-art 3D rendering methods. The ability to create detailed, 3D digital ...

Physicists publish new findings on electron emission

September 21, 2017

Even more than 100 years after Einstein's explanation of photoemission the process of electron emission from a solid material upon illumination with light still poses challenging surprises. In the report now published in ...

New analysis explains role of defects in metal oxides

September 21, 2017

Sometimes things that are technically defects, such as imperfections in a material's crystal lattice, can actually produce changes in properties that open up new kinds of useful applications. New research from a team at MIT ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.