The inside dope: new technique may speed the development of molecular electronics

July 26, 2007

Weizmann Institute scientists have developed a new technique that could lead to the development of inexpensive, biodegradable and versatile electronic components, which are made of single layers of organic (carbon-based) molecules.

Often, things can be improved by a little 'contamination.' Steel, for example is iron with a bit of carbon mixed in.

To produce materials for modern electronics, small amounts of impurities are introduced into silicon – a process called doping. It is these impurities that enable electricity to flow through the semiconductor and allow designers to control the electronic properties of the material.

Scientists at the Weizmann Institute of Science, together with colleagues from the US, recently succeeded in being the first to implement doping in the field of molecular electronics – the development of electronic components made of single layers of organic (carbon-based) molecules.

Such components might be inexpensive, biodegradable, versatile and easy to manipulate. The main problem with molecular electronics, however, is that the organic materials must first be made sufficiently pure and then, ways must be found to successfully dope these somewhat delicate systems.

This is what Prof. David Cahen and postdoctoral fellow Dr. Oliver Seitz of the Weizmann Institute’s Material and Interfaces Department, together with Drs. Ayelet Vilan and Hagai Cohen from the Chemical Research Support Unit and Prof. Antoine Kahn from Princeton University did. They showed that such 'contamination' is indeed possible, after they succeeded in purifying the molecular layer to such an extent that the remaining impurities did not affect the system’s electrical behavior.

The scientists doped the 'clean' monolayers by irradiating the surface with UV light or weak electron beams, changing chemical bonds between the carbon atoms that make up the molecular layer. These bonds ultimately influenced electronic transport through the molecules.

This achievement was recently described in the Journal of the American Chemical Society (JACS). The researchers foresee that this method may enable scientists and electronics engineers to substantially broaden the use of these organic monolayers in the field of nanoelectronics. Dr. Seitz: 'If I am permitted to dream a little, it could be that this method will allow us to create types of electronics that are different, and maybe even more environmentally friendly, than the standard ones that are available today.'

Source: Weizmann Institute of Science

Explore further: High-sensitivity cameras reveal the atomic structure of metal-organic frameworks

Related Stories

Electronic depositary of living systems created

February 8, 2017

Lomonosov Moscow State University has developed an information system within the framework of the Noah's Ark project that includes data about samples from biological collections of the University and project partners. There ...

Recommended for you

Stargazers applaud as moon eclipses sun

February 26, 2017

Stargazers applauded as they were plunged into darkness Sunday when the moon passed in front of the sun in a spectacular "ring of fire" eclipse.

ZTE launches world's first 5G-ready smartphone

February 26, 2017

Chinese telecoms giant ZTE unveiled Sunday what it said is the world's first smartphone compatible with the lightening-fast 5G mobile internet service that networks expect to have up and running by 2020.

Canada conservationist warns of 'cyber poaching'

February 25, 2017

Photographers, poachers and eco-tour operators are in the crosshairs of a Canadian conservationist who warns that tracking tags are being hacked and misused to harass and hunt endangered animals.

Polymer additive could revolutionize plastics recycling

February 24, 2017

When Geoffrey Coates, the Tisch University Professor of Chemistry and Chemical Biology, gives a talk about plastics and recycling, he usually opens with this question: What percentage of the 78 million tons of plastic used ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.