Panasonic develops a next-generation robust image sensor

May 14, 2007
Panasonic develops a next-generation robust image sensor

Panasonic today announced the development of a robust and lightfast image sensor for the next generation.

Panasonic's technological breakthrough allows a robust MOS image sensor for use under harsh sunlight for more than 20 years. Unlike traditional image sensors with polymer onchip microlenses and dyed color filters, the revolutionary MOS image sensor has digital-microlenses and photonic color filters, both made of inorganic materials that are inherently fade-resistant and quite robust.

"We can make a significant contribution to our customers by creating new applications with this new sensor. We can also propose various market solutions like automobile and outdoor usages by making the most of its outstanding robustness," said Taku Gobara, Director of Corporate Application Specific Standard Products Division, Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

Conventional MOS image sensors require polymer onchip microlenses and dyed RGB color filters, which are fragile and extremely susceptible to sunlight exposure and a change in temperature. As a result, color images captured by a camera used under direct sunlight, including the ultra-violet (UV) portion, and higher temperature conditions will fade faster.

The cutting-edge semiconductor process technology can realize the pattering of an array of digital-microlenses made of an inorganic material in subwavelength dimensions. A digital-microlens can be formed by patterning digitally the inorganic material in concentric rings, which works out as a conventional onchip microlens to gather more light onto the photo diode area. The light path of each digital-microlens can therefore readily be designed according to its relative position on the image area. As a result, a uniform sensitivity can be achieved across the image area in any camera module in use.

Furthermore, photonic color filters made of inorganic materials have been implemented for the first time by the photonic crystal technology, which allows the photonic color filters to select any colors form UV to infrared spectral regions. The photonic color filters can also provide a variety of camera modules with lightfastness that is essential for an increasing number of tough end uses such as security cameras and automotive cameras.

Source: Panasonic

Explore further: Review: Glitzy iPhone X aside, the iPhone 8 is fine for most

Related Stories

Researchers develop new ultra-fast 3D microscope

September 18, 2017

A new microscope can capture 3-D images of live organisms in real time. It's called the QIs-scope, an innovation from a spinoff of Universidad Carlos III de Madrid (UC3M), 4D Nature. The microscope can be used in biomedical ...

Image: Wildfire smoke crosses U.S. on jet stream

September 6, 2017

When you live on the East Coast and hear about the West Coast wildfires you assume those wildfires won't have any personal effect on you other than empathy for those in the paths of the fires. Think again.

Recommended for you

Startup Pi out to slice the charging cord

September 19, 2017

Silicon Valley youngster Pi on Monday claimed it had developed the world's first wireless charger that does away with cords or mats to charge devices.

A solar cell you can put in the wash

September 18, 2017

Scientists from RIKEN and the University of Tokyo have developed a new type of ultra-thin photovoltaic device, coated on both sides with stretchable and waterproof films, which can continue to provide electricity from sunlight ...

Rickshaws to jump start India's all-electric drive

September 17, 2017

India will roll out nearly 100,000 battery-powered buses and autorickshaws onto its sulphurous city streets in the coming weeks, setting it on the bumpy road to making new vehicle sales all-electric by 2030.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.