Galileo rubidium clocks – a year of in-orbit experience

May 21, 2007
Galileo rubidium clock
Galileo rubidium clock. Credits: ESA, Temex

Europe’s first satellite-borne rubidium clocks have been in orbit for over a year. There is good news for the building of the Galileo system: the results obtained from GIOVE-A’s first year of operations show performance that is largely in line with the specifications.

GIOVE-A, the first Galileo in-orbit validation element, was launched on 28 December 2005. One of its two rubidium clocks was switched on for the first time on 10 January 2006 and Galileo signals were transmitted two days later.

The timekeeping of the clocks on the Galileo spacecraft will play an important role in determining the overall accuracy of the system, so evaluation of their performance is a crucial part of the Galileo in-orbit verification process.

Indirect measurement

The orbit of GIOVE-A is precisely measured by a network of 10 ground-based laser ranging stations, to provide orbital data independent of the navigation data. The navigation signals broadcast from GIOVE-A, and from the GPS spacecraft constellation, are received by the world-wide network of 13 Galileo experimental sensor stations belonging to the GIOVE Mission Segment.

The technique used to characterise clock performance is known as Orbit Determination and Time Synchronisation (ODTS). ODTS is a statistical method which takes the Galileo and GPS data, together with the laser ranging data, and calculates spacecraft orbits, clock times, the effects of the Earth’s atmosphere on the radio signals and the delays in the receiving systems. The precision of the calculations is so great that even the tiny orbit disturbances caused by the pressure of sunlight shining on the satellites is taken into account.

The ground systems cannot measure the ‘pure’ clock performance on-board GIOVE-A. The ‘apparent’ clock performance observed on the ground is seen through the satellite signal generation chain, the radio transmission path through space, the receiver network and the algorithm used to perform the performance estimation.

Performance to date

Comparisons between the on-board clocks and identical units undergoing on-ground life testing show that no unexpected ageing or performance degradation is occurring due to the space environment. Extrapolation of performance measurements for limited-life components such as the rubidium lamps shows that they will easily exceed the required 12-year operational lifetime.

The measured performance of the clocks meets the specification over short and medium timescales. A few ‘jumps’ in clock frequency have been observed, which impact the long term accuracy. Such frequency changes are a well known phenomenon in rubidium clock technology but their cause is not yet well understood. Their effect on GPS performance has already been analysed and corrective measures proposed. The Galileo team are ground testing a number of improvements to the clock design which are intended to minimise both the occurrence and size of the jumps.

Galileo is a joint initiative between ESA and the European Commission. When fully deployed in the early years of the next decade, it will be the first civilian positioning system to offer global coverage.

Source: ESA

Explore further: Europe's Galileo satnav identifies problems behind failing clocks

Related Stories

Hyper-accurate clocks -- The beating heart of Galileo

May 10, 2007

Travellers have relied on accurate timekeeping for navigation since the development of the marine chronometer in the eighteenth century. Galileo, Europe’s twenty-first century navigation system, also relies on clocks – ...

Galileo Satellite Payload Testing Underway

August 26, 2005

Testing of the first Galileo satellites, which form part of what is called the Galileo System Test Bed (GSTB), is under way. One of the two satellites arrived at the ESA-ESTEC test facilities in late July, while the payload ...

First 'European GPS' Galileo satellites named 'GIOVE'

November 10, 2005

GIOVE - standing for 'Galileo In-Orbit Validation Element' - is the name that has been chosen for the two satellites which are currently being prepared to take the first step of the In-Orbit Validation phase towards full ...

Galileo satellites set for year-long Einstein experiment

November 9, 2015

Europe's fifth and sixth Galileo satellites – subject to complex salvage manoeuvres following their launch last year into incorrect orbits – will help to perform an ambitious year-long test of Einstein's most famous theory.

Recommended for you

NASA telescope studies quirky comet 45P

November 22, 2017

When comet 45P zipped past Earth early in 2017, researchers observing from NASA's Infrared Telescope Facility, or IRTF, in Hawai'i gave the long-time trekker a thorough astronomical checkup. The results help fill in crucial ...

Uncovering the origins of galaxies' halos

November 21, 2017

Using the Subaru Telescope atop Maunakea, researchers have identified 11 dwarf galaxies and two star-containing halos in the outer region of a large spiral galaxy 25 million light-years away from Earth. The findings, published ...

Cassini image mosaic: A farewell to Saturn

November 21, 2017

In a fitting farewell to the planet that had been its home for over 13 years, the Cassini spacecraft took one last, lingering look at Saturn and its splendid rings during the final leg of its journey and snapped a series ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.