
 

Researcher: JavaScript Attacks Get Slicker

April 19 2007

An Arbor Networks researcher at CanSecWest details JavaScript
exploits' increasingly sophisticated means of attack and what tools to use
to fight them.

Malicious JavaScript is getting smarter. It's now able to fingerprint
victims' Web browsers, vulnerable components and accessible CLSIDs,
and deliver custom-tailored exploits, according to Dr. Jose Nazario,
senior security engineer for Arbor Networks.

Nazario was referring to NeoSploit, a new malware tool he's seen in the
wild that carries at least seven distinct exploits to infect a PC with, from
which it can choose based on what that PC's weak points are.

"We're seeing a lot of this in the past several months, a lot of malicious
JavaScript - at - large," he said. "People are getting more defensive and
offensive with JavaScript."

Nazario was speaking at his session on reverse-engineering JavaScript
malware on April 18 here at the CanSecWest security show. What he
meant by saying that attackers are using JavaScript more defensively is
that researchers are increasingly finding exploit code that's using more
sophisticated means to obfuscate itself so that security systems won't
pick up on exploits.

Malicious JavaScript delivers browser exploits by, for example, using
adodb.Stream() or setSlice() objects, often dropping ActiveX/VBScript
content in order to download malware onto a system. Obfuscated

1/4



 

JavaScript in its simplest form uses opaque code to thwart static code
review and thereby hide its author's methods and intents. The
obfuscation can range from simple ASCII chr() or ord() techniques to
Base64 encoding or use of a tool such as iWebTool HTML Encrypt to
hide HTML or to string splits or joins to build an AJAX object.

On the simple end, for example, a string split would render a word like
this:

Daxhi="A"+pplica"+"tion";

Vvu=".";

This resulting malicious code, of which the above is a small portion,
would be easily detected by a human, but, as Nazario pointed out, it
presents an effective stumbling block for automated detection.

Attackers also use double obfuscation, Nazario said. On top of simple
joins or splits or single encoding, they use double encoding, often with a
custom decoder. While several people like to use the browser to decode
such exploits, Nazario said it's a bad idea, as the technique is too slow to
get full information from a browser under zero-day conditions.

A better idea, he said, is to divorce the JavaScript engine from the
browser with a tool such as NJS - an independent implementation of the
JavaScript language developed by Netscape and standardized by the
ECMA, and designed to be re-entrant, extensible, fast and
programmable. Other decoding tools include SpiderMonkey, a
JavaScript-C engine from the Mozilla Foundation, and Rhino, an open-
source implementation of JavaScript written entirely in Java.

As Nazario described it, reverse-engineering double-decode malware
essentially entails cleaning up the HTML and decoding on the command

2/4



 

line. This results in code that still requires decoding, so the process is to
repeat until the code is no longer encoded.

However, "Life isn't always this easy," Nazario said. "There are lots of
defensive JavaScript - code samples - coming around that kill all sorts of
inspection routines."

For example, because NJS doesn't know about "arguments," attackers
have used "arguments.callee" to make their code tamper-proof. Callee is
a property of arguments as a local variable available within all function
objects that allows anonymous functions to refer to themselves. That's
necessary for writing recursive strings, which, when executed, cause an
endless loop and throw a monkey wrench into reverse engineering.

Enter SpiderMonkey, Nazario said. Because SpiderMonkey will choke
on certain functions such as alert() or print(), it's impervious to attackers'
use of those functions to mess with decoding efforts. Once it chokes, a
researcher doing reverse engineering can use another language, such as
Python.

In short, as attackers increasingly use JavaScript as a delivery vehicle for
malware, Nazario suggested, one of the first steps in defense should be
to learn JavaScript and to learn how to love it - not a hard task, given that
it's a relatively easy language, he said.

On the up side, attackers using JavaScript are currently limited by the
fact that the language has to be decoded to be used by a browser. Also,
the tools attackers are using to obfuscate their code and its intent are
primitive. But, given that you need a human to analyze the code, those
primitive tools are still effective, Nazario said.

At any rate, JavaScript malware is just taking its baby steps. "They'll
continue to push the envelope," Nazario said - in other words, we can

3/4



 

likely look forward to seeing Malware 2.0 rise to meet the much-
ballyhooed Web 2.0.

Copyright 2007 by Ziff Davis Media, Distributed by United Press
International

Citation: Researcher: JavaScript Attacks Get Slicker (2007, April 19) retrieved 8 April 2024
from https://phys.org/news/2007-04-javascript-slicker.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

4/4

https://phys.org/news/2007-04-javascript-slicker.html
http://www.tcpdf.org

