Lakes beneath Antarctic ice sheets found to initiate and sustain flow of ice to ocean

February 21, 2007

The Earth Institute at Columbia University—One of the planet's most remote and little-understood features may play a crucial role in transporting ice from the remote interior of Antarctica towards the surrounding ocean according to a new research.

Geophysicists Robin Bell and Michael Studinger from the Lamont-Doherty Earth Observatory, a part of The Earth Institute at Columbia University, led a team that discovered four large, subglaical lakes that for the first time the link these water bodies locked beneath miles of ice, to fast flowing ice streams in Antarctica. Together with colleagues from NASA, the University of New Hampshire and the University of Washington, the scientists found that, in four separate cases, lakes appear to contribute to the formation of ice streams. Their work appears in the February 22 issue of the journal Nature.

Ice streams are large, fast-flowing features within ice sheets that transport land-based ice and meltwater to the ocean. One such stream, the Recovery Ice Stream, drains 8 percent of the U.S.-sized East Antarctic Ice Sheet. The Recovery basin, unexplored since 1966, funnels an estimated 35 billion tons of ice into the Weddell Sea annually.

"Until about a year ago, not many people cared much about subglacial lakes," said Studinger. "That's changing, but we're still only just beginning to understand how these lakes, sealed beneath more than two miles of ice, have the potential to impact the rest of the world."

The scientists examined satellite radar images and high-resolution laser profiles of the region for ice stream patterns and surface features indicating the presence of subglacial lakes beneath the ice. Not only did they find four new lakes, but they discovered that the lakes coincide with the origin of tributaries of the Recovery Glacier. Upstream of the lakes, the ice sheet moves at just 2 to 3 meters per year; downstream the flow increases to nearly 50 meters per year. Bell and Studinger conclude that the lakes provide a reservoir of water that lubricates the bed of the stream to facilitate ice flow and prevent the base of the sheet from freezing to the bedrock.

Moreover, their work suggests that subglacial lakes could play a role in and sea level rise as well as regional and global climate change. Meltwater at the base of ice streams increases the flow of ice to the oceans, which could, in turn, contribute to higher sea levels worldwide. In addition, floods have been known to originate from the interior of the ice sheet in the past, possibly from subglacial lakes. These sudden pulses of fresh water could potentially interfere with nearby ocean currents that redistribute heat and carbon dioxide around the globe, disrupting the Earth's finely tuned climate system.

"It's almost as if the lakes are capturing the geothermal energy from the entire basin and releasing it to the ice stream." said Bell. "They power the engines that drive ice sheet collapse. The more we learn about them, the more we realize how important they are."

Source: The Earth Institute at Columbia University

Explore further: North America's freshwater lakes are getting saltier, study finds

Related Stories

Endangered Finnish seals go online to highlight plight

May 12, 2017

Wildlife conservationists in Finland are planning to give endangered seals a spot of online fame by streaming encounters with some of the few hundred remaining mammals in a bid to raise awareness of their plight.

The glaciers are going

May 8, 2017

As can be seen above, the Waggonwaybreen glacier in Svalbard, Norway, has retreated substantially since 1900. Svalbard's glaciers are not only retreating, they are also losing about two feet of their thickness each year. ...

Recommended for you

Lightning sparking more boreal forest fires

June 27, 2017

A new NASA-funded study finds that lightning storms were the main driver of recent massive fire years in Alaska and northern Canada, and that these storms are likely to move farther north with climate warming, potentially ...

Collapse of the European ice sheet caused chaos

June 27, 2017

Scientists have reconstructed in detail the collapse of the Eurasian ice sheet at the end of the last ice age. The big melt wreaked havoc across the European continent, driving home the original Brexit 10,000 years ago.

Greenland now a major driver of rising seas: study

June 26, 2017

Ocean levels rose 50 percent faster in 2014 than in 1993, with meltwater from the Greenland ice sheet now supplying 25 percent of total sea level increase compared with just five percent 20 years earlier, researchers reported ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.