Research Continues for Deep Space Travel Propulsion

January 10, 2007
Research Continues for Deep Space Travel Propulsion
A graduate student watches a Plasmoid Thruster Experiment on the campus of The University of Alabama in Huntsville.

Graduate students and faculty researchers at The University of Alabama in Huntsville are investigating propulsion concepts that could eventually revolutionize deep space travel.

The Plasmoid Thruster Experiment (PTX) is a stepping stone to a highly efficient propulsion concept which could ultimately change how we travel in space, according to Dr. Jason Cassibry, a researcher in UAH’s Propulsion Research Center.

“Larger, more powerful versions can produce fusion for both power and space propulsion, allowing human travel to the outer planets,” he said.

Few groups around the country are working on this emerging technology, according to Cassibry. UAH is among that small number of research institutions.

The experimental branch of the Propulsion Research Center’s pulsed plasma research group is focused on gathering experimental data from PTX, which was originally built at NASA's Marshall Space Flight Center. MSFC donated the equipment to UAH last year.

The purpose of the PTX is to investigate the fundamental plasma and acceleration properties of a small-scale, pulsed plasma thruster.

PTX works by ringing a single turn conical theta pinch coil at about 500 kHz, ionizing and accelerating a small quantity of gas. The magnetic field inside the coil creates a plasmoid, a plasma that has a closed magnetic field structure.

One of the biggest challenges in any electric propulsion concept is increasing the lifetime of the thruster, which must run continuously for several years for deep space missions. Most electric propulsion concepts use plasma, which is in contact with electrodes or acceleration grids, causing erosion of the components and limiting the lifetime of the thruster. The plasmoid thruster potentially has a much longer lifetime, because the plasma is formed inductively, which means that the plasma is not in contact with the thruster components.

UAH researchers ran system tests and calibrations in October, and today the equipment is at full capacity.

In the short term, PTX will continue to take data in support of the ongoing development of the numerical models. This will be accomplished by using a laser interferometer to measure the plasma density. Also, magnetic field measurements help to determine size of the plasmoid. Together, these diagnostics provide a lot of information without affecting the plasmoid itself, according to Cassibry.

In the long term, the PTX experiment will be expanded by varying the coil geometry, adding bias flux and changing the initial conditions to study the effect on the coupling efficiency between the primary coil current and the secondary current in the plasmoid in an effort to improve plasma acceleration and thrust.

“Our experimental pulsed plasma group is keeping a watchful eye on the field of plasma science,” Cassibry said. “We believe that we now have the means and the ability to support further scientific developments in this field.”

Source: University of Alabama Huntsville

Explore further: New power generation and propulsion system for satellites

Related Stories

New power generation and propulsion system for satellites

January 18, 2018

Researchers at the Universidad Carlos III de Madrid (UC3M) and the Universidad Politécnica de Madrid have designed and patented a new propellantless system for satellites that allows generation of electric power and on-board ...

Thruster for Mars mission breaks records

October 24, 2017

An advanced space engine in the running to propel humans to Mars has broken the records for operating current, power and thrust for a device of its kind, known as a Hall thruster.

Neptune: Neutralizer-free plasma propulsion

May 23, 2017

Plasma propulsion is an important and efficient technology used to control spacecraft for Earth observation, communications and fundamental exploration of outer space.

ESA accelerates towards a new space thruster

December 13, 2005

ESA has confirmed the principle of a new space thruster that may ultimately give much more thrust than today's electric propulsion techniques. The concept is an ingenious one, inspired by the northern and southern aurorae, ...

Recommended for you

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Artificial agent designs quantum experiments

January 19, 2018

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
1 / 5 (1) May 15, 2009
I really have a problem with propellant propulsion for interstellar travel, plus the added low particle velocity of plasma particles.

Antimatter propulsion would be the best and that is why I have a patent pending, not to be published at
my request.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.