'Vortex lattices' may help explain material defects

December 22, 2006
'Vortex lattices' may help explain material defects
This set of JILA images shows a rotating Bose-Einstein condensate (BEC) "pinned" to a rotating lattice created with lasers as the shape of the combined "vortex lattice" evolves from triangular (top) to square (bottom). The images on the left show the BEC vortex lattice at low, medium and high pinning strengths, or optical intensity levels (top to bottom). The corresponding images on the right are computer processed to reveal the structural relationship between the BEC vortex and optical lattice, with red indicating the symmetry of the physical structures (hexagonal/triangular or square). Credit: Cornell group/JILA

What do you get when you superimpose a rotating pattern of intersecting laser beams on a spinning cloud of ultracold atoms in a thin gas? Pretty pictures, for one thing--but also a new method that could be used to simulate why and how defects arise in superconductors, important materials that are difficult to study directly.

By combining two cutting-edge laboratory creations--optical lattices and atoms in a Bose-Einstein condensate (BEC) spinning in a trap like planets orbiting the sun--physicists at JILA have developed a method of visualizing defects, or disruptions, in rotating patterns.

The experiments, reported in a paper published online Dec. 12 by Physical Review Letters, create the equivalent of "tornadoes in valleys," says group leader Eric Cornell, a Fellow at the National Institute of Standards and Technology (NIST). JILA is a joint institute of NIST and the University of Colorado at Boulder.

A BEC is a unique form of matter, first created by Cornell and colleague Carl Wieman at JILA, in which atoms are chilled to near absolute zero, and a point at which, by the rules of quantum physics, they condense into an amorphous "super atom" in which the individual atoms are indistinguishable. Part of the scientific fascination with BECs is that they share important physical characteristics with seemingly quite different phenomena, such as low-energy paired electrons in superconductors or the "superfluid" helium-4 that flows uphill with zero viscosity. For instance, helium-4, when stirred, doesn't circulate around the container like water in a glass, but rather breaks into an orderly array of quantized vortices, or little tornadoes. BECs behave the same way.

The JILA experiments were performed with 3 million rubidium atoms held in a magnetic trap. A superfluid of vortices was created by spinning the trap. The reddish BEC cloud, about 100 micrometers in diameter, contained about 100 hollow vortices, like a spinning bundle of fibers. Lasers were used to set up optical lattices--grids of light in an arrangement of energy peaks and troughs--in triangular and square patterns and focus them onto the BEC.

The overlapping lattice and vortices, under certain conditions such as when spinning at about the same rates, tend to lock together. The energy peaks of the lattice "pin" the BEC at those spots by reducing the density of the superfluid flowing around the local vortex. The JILA group visualized the structure or repeating patterns of the pinned vortex lattice by taking pictures over time, and then using an image processing technique to show how the vortex lattice structure and orientation were related to the optical lattice structure and orientation. The vortex lattice and peak optical signals evolve into different shapes at various laser intensities and spinning rates. Because BECs and optical lattices can be precisely controlled, the technique may be useful in studying more mysterious patterned superfluids, such as superconductors.

Citation: S. Tung, V. Schweikhard and E.A. Cornell. 2006. Observation of vortex pinning in Bose-Einstein condensates. Physical Review Letters. 97, 240402 (2006) Posted online Dec. 12.

Source: National Institute of Standards and Technology

Explore further: JILA atomic clock mimics long-sought synthetic magnetic state

Related Stories

Water, water—the two types of liquid water

November 10, 2016

There are two types of liquid water, according to research carried out by an international scientific collaboration. This new peculiarity adds to the growing list of strange phenomena in what we imagine is a simple substance. ...

Researchers put a new spin on atomic musical chairs

December 2, 2009

Researchers from the National Institute of Standards and Technology and the Naval Research Laboratory have developed a new way to introduce magnetic impurities in a semiconductor crystal by prodding it with a scanning tunneling ...

Copper-based materials show strange spin states

March 28, 2012

(PhysOrg.com) -- Just as water, ice, and steam are all phases of the same material that are influenced by temperature and pressure, new research shows how transitions of state work in very simple lattices primarily composed ...

Recommended for you

Melting solid below the freezing point

January 23, 2017

Phase transitions surround us—for instance, liquid water changes to ice when frozen and to steam when boiled. Now, researchers at the Carnegie Institution for Science have discovered a new phenomenon of so-called metastability ...

Probe for nanofibers has atom-scale sensitivity

January 20, 2017

Optical fibers are the backbone of modern communications, shuttling information from A to B through thin glass filaments as pulses of light. They are used extensively in telecommunications, allowing information to travel ...

Magnetic recording with light and no heat on garnet

January 19, 2017

A strong, short light pulse can record data on a magnetic layer of yttrium iron garnet doped with Co-ions. This was discovered by researchers from Radboud University in the Netherlands and Bialystok University in Poland. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.