New insights into the origin of life on Earth

December 11, 2006

In an advance toward understanding the origin of life on Earth, scientists have shown that parts of the Krebs cycle can run in reverse, producing biomolecules that could jump-start life with only sunlight and a mineral present in the primordial oceans.

The Krebs cycle is a series of chemical reactions of central importance in cells — part of a metabolic pathway that changes carbohydrates, fats and proteins into carbon dioxide and water to generate energy.

Scot T. Martin and Xiang V. Zhang explain that a reverse version of the cycle, which makes enzymes and other biomolecules from carbon dioxide, has been getting attention from scientists studying the origin of life. If the reverse cycle worked on a lifeless Earth, it could have produced the fundamental biochemicals needed for the development of more-advanced biological systems like RNA that could reproduce themselves.

In a report scheduled for the Dec. 13 issue of the weekly Journal of the American Chemical Society, Martin and Zhang demonstrate that three of the five chemical reactions in the reverse Krebs cycle worked and produced biomolecules on the surface of a mineral believed to have been present in the waters of the early Earth. The mineral -- sphalerite -- acted as a photocatalyst that worked with sunlight to foster the chemical reactions.

Source: American Chemical Society

Explore further: Nematode can rebuild muscle and neurons after complete degradation

Related Stories

Plate tectonics not needed to sustain life

July 30, 2018

There may be more habitable planets in the universe than we previously thought, according to Penn State geoscientists, who suggest that plate tectonics—long assumed to be a requirement for suitable conditions for life—are ...

Recommended for you

Magnetized inflow accreting to center of Milky Way galaxy

August 17, 2018

Are magnetic fields an important guiding force for gas accreting to a supermassive black hole (SMBH) like the one that our Milky Way galaxy hosts? The role of magnetic fields in gas accretion is little understood, and trying ...

Another way for stellar-mass black holes to grow larger

August 17, 2018

A trio of researchers with The University of Hong Kong, Academia Sinica Institute of Astronomy and Astrophysics in Taiwan and Northwestern University in the U.S., has come up with an alternative theory to explain how some ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.