Last LHC superconducting main magnet completes the suite at CERN

November 28, 2006

CERN took delivery of the last superconducting main magnet for the Large Hadron Collider (LHC) on 27 November. This completes the full set of 1624 main magnets required to build the world's largest and most powerful particle accelerator.

Constructing this gigantic scientific machine is a technological and logistical challenge for CERN and its industrial partners. The LHC accelerator was initially conceived 22 years ago and approved for build 10 years later. Its realisation involved more than 200 manufacturers around the world, producing vast quantities of complex components to tight precision.

The LHC is located inside a circular underground tunnel of 27km circumference approximately 100 metres beneath Switzerland and France. When fully operational, it will reach seven times more energy than the most powerful particle accelerator currently in use. Scientists will use the LHC to recreate the conditions just after the Big Bang, by colliding two beams of protons travelling in opposite directions at close to the speed of light.

Thousands of magnets of different varieties and sizes will be used to navigate the beams of particles around the accelerator. These include the superconducting main magnets, of which 1232 ‘dipole' magnets of 15 metre lengths are used to guide the beams, and 392 ‘quadrupole' magnets of 5 to 7 metre lengths are used to focus the beams.

"The present achievement is an essential milestone. The successful completion of all main magnets for the LHC accelerator results from the dedication and efficient collaboration of teams from CERN, other laboratories and many European industries. This is a promising step towards achieving the three pillars of the LHC – the accelerator, experiments, and computing – and the ultimate goal of scientific discoveries," summarised CERN's Director General Robert Aymar.

Turning a scientific plan on paper into reality is an immensely complex task. The design of the magnets presented one of the most important technological challenges for the LHC. A high magnetic field is required to bend the path of the particle beam around the accelerator. To achieve this, the magnets must perform at the most efficient ‘superconducting' state without loss of energy, which requires chilling to a temperature of -271°C throughout the LHC's operation – this is even colder than outer space!

CERN led the design and production processes of the dipole magnets, assembled by three European partners: Babcock Noell GmbH (Germany), Alstom MSA-Jeumont (a French consortium), and Ansaldo Superconduttori (Italy). "We introduced new techniques that were not yet standard in industry, including a new welding method for special stainless steel. We worked closely with industrial partners to adapt state of the art technologies for large-scale productions, while maintaining stringent standards and economic efficiency," said Lucio Rossi, head of the Magnets, Cryostats and Superconductors group at CERN. Lyn Evans, LHC project leader, added, "This is the end of more than six years of industrial production under very tight quality control. It has required a very close collaboration between the magnet manufacturers and CERN." The quadrupole main magnets were designed by CEA-DAPNIA laboratory (France), within the framework of the French special contribution to the LHC, and assembled by ACCEL Instruments (Germany) with similar challenges.

CERN's industrial partners have also benefited from the project to build the LHC. The processes of research and development, coupled with the knowledge transfer from expertise only found in a world-class particle physics laboratory, have resulted in innovations they can reapply to other products in industry, from magnetic resonance imaging (MRI) machines to car manufacturing.

Assembly processes to complete the LHC are expected to finish by mid-2007, in preparation for the start-up in November 2007. The LHC will be central to the next generation of experiments at CERN, enabling scientific investigations that have never been possible before. A new frontier of knowledge will shed light on the unresolved questions of science, such as the search for the elusive Higgs boson to explain the origin of particle mass, investigating the make up of dark matter, and the existence of extra dimensions of space.

Source: CERN

Explore further: The crown jewel of the HL-LHC magnets

Related Stories

The crown jewel of the HL-LHC magnets

June 26, 2017

While the LHC is at the start of a new season of data taking, scientists and engineers around the world are working hard to develop brand new magnets for the LHC upgrade, the High-Luminosity LHC (HL-LHC).

LHC magnets: the great descent

March 7, 2005

The first superconducting magnet for the Large Hadron Collider (LHC) was lowered into the accelerator tunnel at 2.00 p.m. on Monday, 7th March. This is the first of the 1232 dipole magnets for the future collider, which measures ...

Engineers refine protection system for LHC magnets

September 4, 2015

This week, the Large Hadron Collider (LHC) was switched off for its second scheduled technical stop since starting to run at the new high energy of 6.5 teraelectronvolts (TeV) per beam. These regular stops allow engineers ...

Long shutdown to consolidate LHC magnet interconnections

February 11, 2014

Since April last year, the Superconducting Magnets And Circuits Consolidation (SMACC) team has been strengthening the electrical connections of the superconducting circuits on the Large Hadron Collider (LHC). This work is ...

Recommended for you

Physicists explore a new recipe for heating plasma

August 22, 2017

In the quest for fusion energy, scientists have spent decades experimenting with ways to make plasma fuel hot and dense enough to generate significant fusion power. At MIT, researchers have focused their attention on using ...

Scientists accelerate airflow in mid-air

August 21, 2017

When a fan blows air across a room, the airflow typically decelerates and spreads out. Now in a new study, scientists have demonstrated the opposite: an airflow created by a carefully controlled ultrasound array can maintain ...

3-D particle tracking? There's an app for that

August 21, 2017

Using four low-cost smartphone cameras and some simple colored backlighting, KAUST researchers have dispensed with expensive research-grade camera equipment and dangerous lasers to construct a tomographic particle image velocimetry ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.