Jupiter's Little Red Spot Growing Stronger

October 10, 2006
Jupiter's Little Red Spot Growing Stronger
These are two views of Jupiter's Little Red Spot taken with the Hubble Space Telescope in April 2006. The left image is a close-up view. In the right image, a box has been added to show the Little Red Spot's location on Jupiter. The larger Great Red Spot, which has been observed for the past 400 years, can be seen to the right. Credit: NASA / ESA / Amy Simon-Miller

The highest wind speeds in Jupiter's Little Red Spot have increased and are now equal to those in its older and larger sibling, the Great Red Spot, according to observations with NASA's Hubble Space Telescope.

The Little Red Spot's winds, now raging up to approximately 400 miles per hour, signal that the storm is growing stronger, according to the NASA-led team that made the Hubble observations. The increased intensity of the storm probably caused it to change color from its original white in late 2005, according to the team.

"No one has ever seen a storm on Jupiter grow stronger and turn red before," said Amy Simon-Miller of NASA's Goddard Space Flight Center, Greenbelt, Md., lead author of a paper describing the new observations appearing in the journal Icarus. "We hope continued observations of the Little Red Spot will shed light on the many mysteries of the Great Red Spot, including the composition of its clouds and the chemistry that gives it its red color."

Although it seems small when viewed against Jupiter's vast scale, the Little Red Spot is actually about the size of Earth, and the Great Red Spot is around three Earth diameters across. Both are giant storms in Jupiter's southern hemisphere powered by warm air rising in their centers.

The Little Red Spot is the only survivor among three white-colored storms that merged together. In the 1940s, the three storms were seen forming in a band slightly below the Great Red Spot. In 1998, two of the storms merged into one, which then merged with the third storm in 2000. In 2005, amateur astronomers noticed that this remaining, larger storm was changing color, and it became known as the Little Red Spot after becoming noticeably red in early 2006.

The new Hubble observations by the team reveal that winds in the Little Red Spot have grown stronger compared to previous observations. In 1979, Voyager 1 and 2 flew by Jupiter and recorded that top winds were only about 268 miles per hour in one of the "parent" storms that merged to become the Little Red Spot. Nearly 20 years later, the Galileo orbiter revealed that top wind speeds were still the same in the parent storm, but winds in the Great Red Spot blew at up to 400 miles per hour. The team used Hubble's new Advanced Camera for Surveys instrument to discover that top wind speeds in both storms are now the same, because this instrument has enough resolution to track small features in these storms, revealing their wind speeds.

Scientists are not sure why the Little Red Spot is growing stronger. One possibility is a change in size. These storms naturally fluctuate in size, and their winds spin around their central core of rising air. If the storm were to become smaller, its spiraling winds would increase the same way spinning ice skaters turn faster by pulling their arms closer to their bodies. Another possibility is that it's the only survivor. "The lack of other large storms in the same latitude on Jupiter leaves more energy to feed the Little Red Spot," said Simon-Miller.

According to the team, the increased intensity of the Little Red Spot probably explains why it changed color. It is likely to be behaving like the Great Red Spot for two reasons: it has the same wind speed and the team's color analysis showed that it really is the same color as the Great Red Spot. It's probably pulling up gaseous material from far below that changes color when exposed to ultraviolet radiation in sunlight. The question remains whether the storm is pulling up something that it wasn't before, because its increased intensity allows it to reach deeper, or whether it is pulling up the same material but the higher winds allow the storm to hold it aloft longer, increasing the time it is exposed to solar ultraviolet light and turning it red.

The team could confirm exactly what the red material is if they are able to use a technique called spectroscopy in future observations of the Little Red Spot. Spectroscopy is an analysis of the light given off by an object. Each element and chemical gives a unique signal - brightness at specific colors or wavelengths. Identifying these signals reveals an object's composition.

However, spectroscopy of Jupiter's atmosphere is complicated because it has many chemicals that could turn red if exposed to ultraviolet light. "We need to simulate different possible Jupiter atmospheres in a lab so we can discover what spectrometric signals they give. We will then have something to compare with the actual spectrometric signal," said Simon-Miller.

The team includes Simon-Miller, Dr. Nancy J. Chanover and Michael Sussman of New Mexico State University, Las Cruces, N.M.; Dr. Glenn S. Orton of NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Irene G. Tsavaris of the University of Maryland, College Park; and Dr. Erich Karkoschka of the University of Arizona, Tucson.

Source: by Bill Steigerwald, NASA Goddard Space Flight Center

Explore further: A guide to meteor showers – what to look out for and when

Related Stories

A guide to meteor showers – what to look out for and when

November 20, 2017

It has happened to most of us: walking home late at night under clear skies you catch a glimpse of something bright moving, often from the corner of your eye. You turn to see what it is but it's gone without a trace. And ...

A familiar-looking messenger from another solar system

November 16, 2017

The visit of the interstellar interloper 1I/2017 U1, recently spotted streaking through the solar system, gives the people of Earth their first chance to study up close an object from another planetary system. In a study ...

In Israel, searching for droughts past and future

November 2, 2017

Perched on a cliff face in Israel's Negev Desert, close to where the book of Genesis says the wicked cities of Sodom and Gomorrah were burned with divine fire, geologist Steven Goldstein was excitedly uncovering evidence ...

If we can beat Ebola, why not sleeping sickness too?

November 7, 2017

The man sits on the edge of the bed, feet touching the floor but incapable of supporting his weight. He doesn't speak and his eyes stare vacantly ahead, despite the eight or ten people who have crowded in to see him. His ...

7 skin care myths you thought were true

October 31, 2017

Itchy skin, bright rashes, dark blemishes, sun burns. Our skin changes all the time, but usually we don't give it much thought until we spot a pimple here or a bumpy rash there. But every day your skin has a long list of ...

Recommended for you

NASA telescope studies quirky comet 45P

November 22, 2017

When comet 45P zipped past Earth early in 2017, researchers observing from NASA's Infrared Telescope Facility, or IRTF, in Hawai'i gave the long-time trekker a thorough astronomical checkup. The results help fill in crucial ...

Cassini image mosaic: A farewell to Saturn

November 21, 2017

In a fitting farewell to the planet that had been its home for over 13 years, the Cassini spacecraft took one last, lingering look at Saturn and its splendid rings during the final leg of its journey and snapped a series ...

Uncovering the origins of galaxies' halos

November 21, 2017

Using the Subaru Telescope atop Maunakea, researchers have identified 11 dwarf galaxies and two star-containing halos in the outer region of a large spiral galaxy 25 million light-years away from Earth. The findings, published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.