Ultrafast star escapes black hole

September 21, 2006

At last astronomers have a method to accurately measure the speed of stars within a galaxy containing a black hole. Dutch researcher Alessia Gualandris developed the algorithm for this in cooperation with the Astronomical Institute "Anton Pannekoek" and the Amsterdam Informatics Institute. The outcomes of this groundbreaking research provide convincing evidence for the relationship between galactic nuclei, heavy black holes and ultrafast stars in the Milky Way.

Galactic nuclei are the cores of galaxies, groups of thousands to millions of stars that are held together by gravity. As stars in the nucleus are so close together, interactions readily occur. If ultraheavy black holes (black holes several million times heavier than the sun) are also involved, stars can be slung out of the galaxy (for example the Milky Way) at speeds of more than one thousand kilometres per second. The astrophysical reasons for this are simple but can only be demonstrated with detailed calculations on specially developed computers.

The interdisciplinary research team of which Gualandris was a member (and that cooperated with Japanese, German and US researchers) spent the past four years developing algorithms and special computers in order to accurately calculate the dynamic and internal evolution of a galactic nucleus. However, these calculations can only be performed if the interactions between all of the stars are very accurately described. Gualandris developed a special new algorithm to perform these calculations efficiently on a parallel computer. With this it was at last possible to simulate systems of more than one million stars.

The research results are important for further research into galaxies, black holes and the interaction between these. Dense stellar systems like star clusters or galaxies are fascinating for both astrophysicists and computer scientists due to their enormous physical diversity and because calculations of their high mobility are numerically very complex. Up until now these calculations were difficult to perform as these systems are unsuitable for analytical methods and approximations are not accurate enough. With Gualandris' method the numerical problems have been solved and the origin of ultrafast stars in the Milky Way can be explained.

Source: NWO

Explore further: Multimessenger links to NASA's Fermi mission show how luck favors the prepared

Related Stories

'Zombie' stars return from the dead

October 31, 2018

Black holes are among the most elusive objects in the universe, but research out of Lawrence Livermore National Laboratory (LLNL) suggests the remnant cores of burned-out stars could be the key to making the first observation ...

Gravitational waves could shed light on dark matter

October 22, 2018

The forthcoming Laser Interferometer Space Antenna (LISA) will be a huge instrument allowing astronomers to study phenomena including black holes colliding and gravitational waves moving through space-time. Researchers from ...

Black hole disks may be hiding in the centers of galaxies

September 6, 2018

Galactic nuclei are teeming with black holes. Earlier this year, 12 X-ray binaries were discovered at the Milky Way's center which suggested that thousands of black holes may be hiding in that region. A recent study shows ...

Recommended for you

Astronomers find possible elusive star behind supernova

November 15, 2018

Astronomers may have finally uncovered the long-sought progenitor to a specific type of exploding star by sifting through NASA Hubble Space Telescope archival data and conducting follow-up observations using W. M. Keck Observatory ...

The dance of the small galaxies that surround the Milky Way

November 14, 2018

An international team led by researchers from the IAC used data from the ESA satellite Gaia to measure the motion of 39 dwarf galaxies. This data gives information on the dynamics of these galaxies, their histories and their ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.