Scientists explain why insects don’t get fat

September 27, 2006
Scientists explain why insects don’t get fat
A diamondback moth caterpillar is shown on a Arabidopsis plant. Credit: Dr Spencer Behmer

Insects don’t get fat, and why they don’t may help our understanding of what has been described as the current human obesity epidemic.

The research team from Oxford’s Zoology Department, Texas A&M University, the University of Sydney and the University of Auckland conducted a series of experiments to find out whether caterpillars could adapt to extreme changes in their nutritional environment.

In their study ‘Evolving resistance to obesity in an insect’, published in the Proceedings of the National Academy of Science, they found that diamondback moth caterpillars evolved different physiological mechanisms related to fat metabolism. Which mechanism was used depended on whether the caterpillars were given carbohydrate-rich or carbohydrate-poor food. The researchers believe that caterpillars – and animals in general – can evolve metabolically to adjust to extreme nutritional environments.

The researchers studied the insects over eight generations. In one experiment, they fed caterpillars artificial diets that were rich in protein and low in carbohydrates; at other times the caterpillars received diets low in protein and high in carbohydrates.

In a second experiment, caterpillars were allowed to eat freely one of two plants, an Arabidopsis mutant low in starch or an Arabidopsis mutant high in starch.

When the caterpillars were reared in carbohydrate-rich environments for multiple generations, they developed the ability to eat excess carbohydrate without adding fat to their bodies. On the other hand, those reared in carbohydrate-poor environments showed an ability to store ingested carbohydrates as fat.

Also, after multiple generations on the low-starch plants, female moths preferred to lay their eggs on these same plants. The researchers explain that it is one of the first instances of a moth showing egg-laying behaviour that is tied to a plant’s nutritional chemistry.

The researchers believe moths from low-starch plans might avoid high-starch plants because they might make their offspring obese. Female moths reared on the high-starch plant for multiple generations showed no preference.

The inference made by the researchers is that like insects, humans require carbohydrates and proteins, but that humans are not well adapted to diets containing extremely high levels of carbohydrates – a radically different diet to that of our ancestors. However, they say, lack of exercise might be another factor in why humans convert excess carbohydrate to fat.

Explore further: 10 of the most diabolical crop pests in North Carolina

Related Stories

10 of the most diabolical crop pests in North Carolina

June 27, 2018

Arthropod pests (both insects and mites) rob North Carolina farmers every year by eating into their crop yields. No matter what a grower does, it seems like there is always a destructive pest waiting in the wings. We've curated ...

Fat, thin caterpillars are studied

September 21, 2006

A U.S.-led international team of scientists says there's no obesity epidemic among insects and the researchers believe they now know why.

Recommended for you

Common weed killer linked to bee deaths

September 24, 2018

The world's most widely used weed killer may also be indirectly killing bees. New research from The University of Texas at Austin shows that honey bees exposed to glyphosate, the active ingredient in Roundup, lose some of ...

How Earth sheds heat into space

September 24, 2018

Just as an oven gives off more heat to the surrounding kitchen as its internal temperature rises, the Earth sheds more heat into space as its surface warms up. Since the 1950s, scientists have observed a surprisingly straightforward, ...

Some female termites can reproduce without males

September 24, 2018

Populations of the termite species Glyptotermes nakajimai can form successful, reproducing colonies in absence of males, according to a study published in the open access journal BMC Biology.

Photosynthesis discovery could help next-gen biotechnologies

September 24, 2018

Researchers from The University of Queensland (UQ) and the University of Münster (WWU) have purified and visualized the 'Cyclic Electron Flow' (CEF) supercomplex, a critical part of the photosynthetic machinery in all plants, ...

How fruits got their eye-catching colors

September 24, 2018

Red plums. Green melons. Purple figs. Ripe fruits come in an array of greens, yellows, oranges, browns, reds and purples. Scientists say they have new evidence that plants owe their rainbow of fruit colors to the different ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.