Container transport on a nano scale

September 6, 2006

Lock one or more molecules up within a cage of nanometer dimensions. Take this ‘nanocontainer’ to the desired spot and free the molecules. Or keep them locked up for a while and introduce other molecules into the container, for chemical reactions inside. By using polymers containing iron, it is possible to make intelligent containers of which the access of molecules can be regulated in a chemical way.

A research team led by prof Julius Vancso of the MESA+ Institute for Nanotechnology (The Netherlands) has succeeded in fabricating these nanocontainers. The scientists foresee exciting applications in e.g. medicine, in adding additives to food or in ultrafast reactions in nano chemistry. They present their results in the September issue of Nature Materials.

A true breakthrough in this research is the use of polymers having iron in their main chain. This is the material the containers are made of. By using iron, for the first time it is possible to adjust the permeability of the material via oxidation and reduction reactions. Scientist Mrs. Yujie Ma and Dr. Mark Hempenius, both of the group of Julius Vancso, succeeded in creating containers that can be opened and closed in this ‘chemical’ way. Oxidants or reductants take care of the access: een oxidant can be ironchloride, for example, a reductant could even be Vitamine C.

Chemical doormen

This selective access –one molecule gets in, the other won’t- is the result of the layered structure of the wall of the container. Polymer chains are layererd on top of each other and an electrostatic charge keeps them together. Influencing this charge with redox reactions, immediately influences the permeability of the wall. The container can contain a limited number of molecules, a soluble is already present inside.

As oxidation and reduction steps take part in numerous biochemical processes in water, the nanocontainers are useful for a variety of biological and biomedical applications. The scientists foresee applications in ‘green’ areas like food additives, medicine and cosmetics. In a more fundamental way, nanocontainers could be used in biochemistry to study large numbers of enzyme reactions at the same time and with high throughput.

The research, led by prof.dr. Julius Vancso of the MESA+ Institute for Nanotechnology of the University of Twente, has been done in close cooperation with the Group of prof. Helmuth Möhwald of the Max Planck Institut für Kolloid- und Grenzflachenforschung in Golm. The article ‘Redox-controlled molecular permeability of composite-wall microcapsules’ is published in the September issue of Nature Materials.

Source: University of Twente

Explore further: Some catalysts contribute their own oxygen for reactions

Related Stories

Some catalysts contribute their own oxygen for reactions

January 9, 2017

Chemical reactions that release oxygen in the presence of a catalyst, known as oxygen-evolution reactions, are a crucial part of chemical energy storage processes, including water splitting, electrochemical carbon dioxide ...

Biochemist studies how ribosomes make proteins

January 10, 2017

Ribosomes are molecular machines programmed by genetic blueprints, which make proteins by linking amino acids together into linear chains that fold into sequence-dependent shapes. Ludwig Maximilian University biochemist Roland ...

Light-induced vesicle explosions to mimic cellular reactions

December 22, 2016

Cells are the site of a multitude of chemical reactions, the precision of which is envied by scientists. A team of researchers from the CNRS and Bordeaux INP have neared this level of control by controlling the explosion ...

Carbanion analogs derived from naturally-occurring aldehydes

December 23, 2016

(Phys.org)—Researchers from McGill University in Montreal have devised a novel carbon-carbon bond-forming reaction that serves as an alternative to a nucleophilic addition reaction of an organometallic compound to a carbonyl ...

Recommended for you

Graphene photodetector enhanced by fractal golden 'snowflake'

January 16, 2017

(Phys.org)—Researchers have found that a snowflake-like fractal design, in which the same pattern repeats at smaller and smaller scales, can increase graphene's inherently low optical absorption. The results lead to graphene ...

Nanoscale view of energy storage

January 16, 2017

In a lab 18 feet below the Engineering Quad of Stanford University, researchers in the Dionne lab camped out with one of the most advanced microscopes in the world to capture an unimaginably small reaction.

Scientists create first 2-D electride

January 11, 2017

(Phys.org)—Researchers have brought electrides into the nanoregime by synthesizing the first 2D electride material. Electrides are ionic compounds, which are made of negative and positive ions. But in electrides, the negative ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.