Container transport on a nano scale

September 6, 2006

Lock one or more molecules up within a cage of nanometer dimensions. Take this ‘nanocontainer’ to the desired spot and free the molecules. Or keep them locked up for a while and introduce other molecules into the container, for chemical reactions inside. By using polymers containing iron, it is possible to make intelligent containers of which the access of molecules can be regulated in a chemical way.

A research team led by prof Julius Vancso of the MESA+ Institute for Nanotechnology (The Netherlands) has succeeded in fabricating these nanocontainers. The scientists foresee exciting applications in e.g. medicine, in adding additives to food or in ultrafast reactions in nano chemistry. They present their results in the September issue of Nature Materials.

A true breakthrough in this research is the use of polymers having iron in their main chain. This is the material the containers are made of. By using iron, for the first time it is possible to adjust the permeability of the material via oxidation and reduction reactions. Scientist Mrs. Yujie Ma and Dr. Mark Hempenius, both of the group of Julius Vancso, succeeded in creating containers that can be opened and closed in this ‘chemical’ way. Oxidants or reductants take care of the access: een oxidant can be ironchloride, for example, a reductant could even be Vitamine C.

Chemical doormen

This selective access –one molecule gets in, the other won’t- is the result of the layered structure of the wall of the container. Polymer chains are layererd on top of each other and an electrostatic charge keeps them together. Influencing this charge with redox reactions, immediately influences the permeability of the wall. The container can contain a limited number of molecules, a soluble is already present inside.

As oxidation and reduction steps take part in numerous biochemical processes in water, the nanocontainers are useful for a variety of biological and biomedical applications. The scientists foresee applications in ‘green’ areas like food additives, medicine and cosmetics. In a more fundamental way, nanocontainers could be used in biochemistry to study large numbers of enzyme reactions at the same time and with high throughput.

The research, led by prof.dr. Julius Vancso of the MESA+ Institute for Nanotechnology of the University of Twente, has been done in close cooperation with the Group of prof. Helmuth Möhwald of the Max Planck Institut für Kolloid- und Grenzflachenforschung in Golm. The article ‘Redox-controlled molecular permeability of composite-wall microcapsules’ is published in the September issue of Nature Materials.

Source: University of Twente

Explore further: From chemical reaction to living cells – what kicked off the development of early life on earth?

Related Stories

Light and copper catalysis improves amine synthesis

February 8, 2018

EPFL chemists have developed a novel and efficient method to make amines, which are among the most important structural compounds in pharmaceuticals and organic materials. The study is published in Nature Catalysis.

Understanding conditions for star formation

February 6, 2018

Researchers have demonstrated how a gas escapes ice at an extremely cold temperature, providing insight into star formation in interstellar clouds. The mechanism by which hydrogen sulphide is released as gas in interstellar ...

The chemical evolution of DNA and RNA on early Earth

January 18, 2018

RNA was probably the first informational molecule. Now, chemists from Ludwig-Maximilians-Universitaet (LMU) in Munich have demonstrated that alternation of wet and dry conditions could have sufficed to drive the prebiotic ...

Recommended for you

Researchers create first superatomic 2-D semiconductor

February 16, 2018

Atoms are the basic building blocks of all matter—at least, that is the conventional picture. In a new study, researchers have fabricated the first superatomic 2-D semiconductor, a material whose basic units aren't atoms ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.