SMART-1 Maneuvers Prepare For Mission End

June 26, 2006
SMART-1

After 16 months orbiting the Moon, ESA's lunar mission is preparing for the end of its scientific exploration. Last Monday, SMART-1 mission controllers initiated a 17-day series of maneuvers aimed at positioning the spacecraft to enhance science data return as the mission winds down.

SMART-1, Europe's successful first Moon mission, is scheduled to end on Sept. 3, impacting on the lunar surface in a disposal plan similar to that of many earlier missions and almost three years to the day after its 2003 launch.

With the maneuvers, ESA controllers aim to avoid having the spacecraft impact on the Moon at a disadvantageous time - from a scientific point of view - which would have happened on or about Aug. 17 if the spacecraft had been allowed to continue on its present trajectory.

Instead, the extension of the mission will provide new opportunities for low-altitude scientific observations and optimum science returns during and after the spacecraft's controlled impact.

In preparation for mission end, controllers at ESA's Spacecraft Operations Center have started a series of thruster firings to give a delta velocity, or change in velocity, of approximately 12 meters (39 feet) per second.

This action will raise the orbit perilune (point of closest passage over the Moon) by about 90 kilometers (56 miles) and will shift the impact date to Sept. 3.

"The shift in date, time and location for Moon intersection is also optimized to favor scientific observations from Earth," said Gerhard Schwehm, ESA's SMART-1 mission manager.

"Projections based on the current orbit indicated that the spacecraft, if left as is, would impact the Moon on the far side, away from ground contact and visibility. The new location is on the Moon's near-side, at mid-southern latitudes," he added.

For the maneuver campaign, the use of the electric propulsion system (the ion engine) had to be ruled out since all Xenon propellant reserves were exhausted during the mission. The mission control team instead has developed an imaginative approach.

"The maneuver strategy consists of a series of reaction-wheel off-loadings combined with about three hours of intermittent thrust centered at apolune (point of furthest distance from the Moon) during the next 74 orbits," said Octavio Camino, Spacecraft Operations Manager at ESOC.

The off-loading consists of braking a set of spinning wheels inside the spacecraft, which has the effect of transferring angular momentum from the wheels to the spacecraft and hence changing its velocity.

"We use asymmetric firing of the attitude thrusters to produce a small velocity variation aligned with the flight direction. This will change the orbit by an accumulative effect," Camino said.

"After these maneuvers, science activities will resume until the impact, with short interruptions for two trim maneuvers to adjust the impact time, one around the end of July and one at the beginning of September," he added.

Copyright 2006 by Space Daily, Distributed United Press International

Explore further: Juno probes the depths of Jupiter's great red spot

Related Stories

Juno probes the depths of Jupiter's great red spot

December 12, 2017

Data collected by NASA's Juno spacecraft during its first pass over Jupiter's Great Red Spot in July 2017 indicate that this iconic feature penetrates well below the clouds. Other revelations from the mission include that ...

Bright areas on Ceres suggest geologic activity

December 13, 2017

If you could fly aboard NASA's Dawn spacecraft, the surface of dwarf planet Ceres would generally look quite dark, but with notable exceptions. These exceptions are the hundreds of bright areas that stand out in images Dawn ...

The Voyagers in popular culture

December 4, 2017

Whether you're traveling across cities, continents or even oceans this holiday season, there is no long-haul flight quite like that of the Voyagers.

Voyager 1 fires up thrusters after 37 years

December 2, 2017

If you tried to start a car that's been sitting in a garage for decades, you might not expect the engine to respond. But a set of thrusters aboard the Voyager 1 spacecraft successfully fired up Wednesday after 37 years without ...

Recommended for you

Complete design of a silicon quantum computer chip unveiled

December 15, 2017

Research teams all over the world are exploring different ways to design a working computing chip that can integrate quantum interactions. Now, UNSW engineers believe they have cracked the problem, reimagining the silicon ...

A not-quite-random walk demystifies the algorithm

December 15, 2017

The algorithm is having a cultural moment. Originally a math and computer science term, algorithms are now used to account for everything from military drone strikes and financial market forecasts to Google search results.

Single-photon detector can count to four

December 15, 2017

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.