Can you hear me now? Not on Mars

June 30, 2006
Mars

It may be difficult for two people to have a conversation on Mars, according to a research paper by Penn State graduate student in acoustics Amanda Hanford and Lyle Long, professor of aerospace engineering.

"Sound doesn't travel very far on Mars," explained Hanford, an acoustics doctoral degree candidate. The work is detailed in the paper, "Computer Simulations of the Propagation of Sound on Mars," and was recently presented at the 151st Acoustical Society of America meeting in Providence, R.I. Long is Hanford's graduate adviser.

Using a direct simulation Monte Carlo (DSMC) method, Hanford and Long took into account the Martian atmospheric composition, as well as the lower atmospheric pressure of Mars and temperature differences.

"In studying sound on Mars, the physical properties of sound are the same," Hanford said, adding that Earth and Mars also share some physical similarities. The simulation predicted that sound on Mars has a lower pitch and very short distance.

She said a sound's lower pitch is the result of the differences in the speed of sound. This is because of the Red Planet's atmospheric makeup -- mostly carbon dioxide, with small percentages of nitrogen and argon with trace amounts of water vapor and oxygen.

"When you breathe in a helium balloon and speak, your voice is a high pitch," Hanford explained. "Assuming you could breathe in carbon dioxide (which is very toxic), your voice would be a lower pitch."

The distance sound can travel is also greatly affected by the Martian atmosphere.

"The lower pressure makes it so sound doesn't travel far," she said. According to the paper, sound generated by a human scream on Earth can travel a little over a kilometer before being absorbed by the atmosphere. On Mars, the sound from that same scream would only move about 16 yards at best.

Hanford created a downloadable movie clip of a DSMC-simulated sound wave propagating in the Martian atmosphere and its rate of decay. The clip can be found at http://www.acoustics.org/press/151st/Hanford.html online.

The last attempt to record sound on Mars was part of the NASA's Mars Polar Lander, launched in January 1999. The probe included a miniature microphone to record sounds on the Martian surface. Communication with the lander was lost after it entered the Martian atmosphere on Dec. 3, 1999.

Source: Penn State

Related Stories

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.