

Got bugs? New project lets real computer
users gang up on software bugs

June 5 2006

Ben Liblit, an assistant professor in the UW-Madison department of computer
sciences, has developed a novel way to root out and eradicate software bugs by
enlisting the power of real users. His approach, called Cooperative Bug Isolation,
uses a program that generates feedback reports from thousands of software
programs in use and helps identify the most common and troublesome software
glitches. Liblit's project is helping bring statistical rigor to post-deployment
software debugging techniques, allowing developers to improve their software
more efficiently. Liblit is pictured with his laptop computer outdoors at the
Memorial Union Terrace at sunset. Photo by: courtesy Bob Rashid.

Ben Liblit offers a bold prediction regarding all of the complicated
software programs churning away in your computer: They have bugs. All
of them. Guaranteed.

"Software bugs are part of the mathematical fabric of the universe," says

1/5

Liblit, a University of Wisconsin-Madison computer scientist. "It is
impossible with a capital 'I' to detect or anticipate all bugs."

The staggering complexity of software is only part of the issue, he
explains. Software has so many different points of interaction - with
hardware, with networks, with other software and mostly with humans -
that opportunities for buggy behavior abound.

"That behavior is so dynamic that it becomes useful to look at [software
programs] almost like they were some sort of organic system, whose
complete behavior is unknowable to you," says Liblit. "But there are
behavior trends you can observe in a statistically significant way."

Liblit takes that metaphor literally in his research, known as the
"Cooperative Bug Isolation Project." Combining programming languages
and software engineering with a dose of machine learning, Liblit has
enlisted real software users to tell him where the bugs are. And he has a
growing "kill board" as evidence the idea works.

Liblit has created lightweight instrumentation that is added into the
binary language of software. The instrumentation creates a sparse, but
statistically fair, random sample of software behavior, while also
protecting user privacy. The system produces regular "feedback reports"
across the thousands of software programs that are in use. All of those
reports get fed into a powerful database that accumulates the data and
starts to identify trends.

Then, through statistical modeling techniques, Liblit is able to pinpoint
software bugs that are occurring with enough regularity to affect many
users. The final step in the feedback loop is a bug report, prepared by
Liblit and sent back to the software engineers capable of acting on the
results.

2/5

The science behind this real-world debugging approach received national
attention this year. The Association for Computing Machinery (ACM)
named Liblit's doctoral dissertation on cooperative bug isolation,
completed at the University of California-Berkeley, as the best in the
world in 2005 among dissertations nominated from both computer
science and engineering programs. And while the open-source software
community has begun to adopt the program, Liblit also has attracted
interest from IBM and Microsoft.

The real excitement of the project, Liblit says, is that it could
dramatically improve the ability to enhance software post-deployment.
"Software developers deploy their programs and rarely hear directly
from users, but the poor guy in tech support gets an earful," he says.
"That's the only kind of feedback you get; you lob it over the wall and
hope it works." This system provides direct information about real-world
software problems that developers can act on with statistical certainty.
Right now, the only way to gauge real-world performance is based on the
"squeaky wheel" effect of those who file bug reports or call tech support.
And real-world performance will always be an important variable in
dynamic debugging techniques.

"It has been cynically observed that software developers use their
consumers as beta testers," he says. "I think there's a lot of truth to that
observation. The problem is consumers are not very good beta testers.
They're not very disciplined, they don't keep good records, they never do
the same thing twice. My solution is to make them better beta testers."

Right now, Liblit has a number of users in the open-source software
environment, where the application has been added to popular programs
such as Evolution (similar to Microsoft Outlook), Gnumeric (a type of
spreadsheet), Rhythmbox (similar to iTunes) and Spin, a CPU simulator
in heavy university use. He has posted 192 versions of eight different
open-source applications during the three-year life of the project.

3/5

The system averages just under 3,000 new reports per month, and bug
rates vary a great deal across applications, he says, with "crash rates"
(where the program shuts down) as high as 8 percent in one application
to a low of 0.4 percent in another. All in all, his "kill board" has recorded
546 outright program crashes and 11,369 lower-level errors as of April
2006.

Liblit says user privacy is absolutely essential to the program's future
viability. The randomly sampled snippets of data have no identifiable
information unto themselves, and only have meaning when aggregated in
large numbers.

Will software development ever reach a level of sophistication that
would render Liblit's bug machine obsolete? Liblit says that scenario is
unlikely. Given that software becomes vastly more complicated with
each generation, his better guess is that the industry is maintaining an
even keel.

"We're trusting our software more than ever before," Liblit notes.
"We're also hating our software more than ever before. And when the
software fails, it's more damaging than it ever was before. But with the
right technology, the users themselves can help make software better for
everyone."

Source: University of Wisconsin-Madison

Citation: Got bugs? New project lets real computer users gang up on software bugs (2006, June
5) retrieved 26 April 2024 from
https://phys.org/news/2006-06-bugs-real-users-gang-software.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private

4/5

https://phys.org/news/2006-06-bugs-real-users-gang-software.html

study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://www.tcpdf.org

