Digital camera 'fingerprinting' developed

April 19, 2006

Child pornographers will soon have a harder time escaping prosecution thanks to a stunning new technology in development at Binghamton University, State University of New York, that can reliably link digital images to the camera with which they were taken, in much the same way that tell-tale scratches are used by forensic examiners to link bullets to the gun that fired them.

"The defense in these kind of cases would often be that the images were not taken by this person's camera or that the images are not of real children," said Jessica Fridrich, associate professor of electrical and computer engineering. "Sometimes child pornographers will even cut and paste an image of an adult's head on the image of a child to try to avoid prosecution.

"But if it can be shown that the original images were taken by the person's cell phone or camera, it becomes a much stronger case than if you just have a bunch of digital images that we all know are notoriously easy to manipulate."

Fridrich and two members of her Binghamton University research team – Jan Lukas and Miroslav Goljan – are coinventors of the new technique, which can also be used to detect forged images.

The three have applied for two patents related to their technique, which provides the most robust strategy for digital image forgery detection to date, even as it improves significantly on the accuracy of other approaches.

Fridrich's technique is rooted in the discovery by her research group of this simple fact: Every original digital picture is overlaid by a weak noise-like pattern of pixel-to-pixel non-uniformity.

Although these patterns are invisible to the human eye, the unique reference pattern or "fingerprint" of any camera can be electronically extracted by analyzing a number of images taken by a single camera.

That means that as long as examiners have either the camera that took the image or multiple images they know were taken by the same camera, an algorithm developed by Fridrich and her co-inventors to extract and define the camera's unique pattern of pixel-to-pixel non-uniformity can be used to provide important information about the origins and authenticity of a single image.

The limitation of the technique is that it requires either the camera or multiple images taken by the same camera, and isn't informative if only a single image is available for analysis.

Like actual fingerprints, the digital "noise" in original images is stochastic in nature – that is, it contains random variables – which are inevitably created during the manufacturing process of the camera and its sensors. This virtually ensures that the noise imposed on the digital images from any particular camera will be consistent from one image to the next, even while it is distinctly different.

In preliminary tests, Fridrich's lab analyzed 2,700 pictures taken by nine digital cameras and with 100 percent accuracy linked individual images with the camera that took them.

Fridrich, who specializes in all aspects of information hiding in digital imagery, including watermarking for authentication, tamper detection, self-embedding, robust watermarking, steganography and steganalysis, as well as forensic analysis of digital images, says it is the absence of the expected digital fingerprint in any portion of an image that provides the most conclusive evidence of image tampering.

In the near future, Fridrich's technique promises to find application in the analysis of scanned and video imagery. There it can be expected to make life more difficult for forgers, or any others whose criminal pursuits rely on the misuse of digital images.

"We already know law enforcement wants to be able to use this," Fridrich said. "What we have right now is a research tool; it's a raw technology that we will continue to improve."

Source: Binghamton University

Explore further: New 3-D display takes the eye fatigue out of virtual reality

Related Stories

How drones are advancing scientific research

June 19, 2017

Drones, or unmanned aerial vehicles (UAVs), have been around since the early 1900s. Originally used for military operations, they became more widely used after about 2010 when electronic technology got smaller, cheaper and ...

Opportunity reaches 'Perseverance Valley' precipice

June 19, 2017

Now well into her 13th year roving the Red Planet, NASA's astoundingly resilient Opportunity rover has arrived at the precipice of "Perseverance Valley" – overlooking the upper end of an ancient fluid-carved valley on ...

Face recognition system 'K-Eye'

June 15, 2017

Artificial intelligence (AI) is one of the key emerging technologies. Global IT companies are competitively launching the newest technologies and competition is heating up more than ever. However, most AI technologies focus ...

New tools help early diagnosis of systemic sclerosis

June 15, 2017

The results of two studies presented today at the Annual European Congress of Rheumatology (EULAR) 2017 highlight the use of two new tools that can potentially play a pivotal role in the early diagnosis of Systemic Sclerosis ...

Recommended for you

Predicting the future with the wisdom of crowds

June 23, 2017

Forecasters often overestimate how good they are at predicting geopolitical events—everything from who will become the next pope to who will win the next national election in Taiwan.

Mars rover Opportunity on walkabout near rim

June 23, 2017

NASA's senior Mars rover, Opportunity, is examining rocks at the edge of Endeavour Crater for signs that they may have been either transported by a flood or eroded in place by wind.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.