New multifunctional chip to meld memory, logic and communications functions

March 8, 2006

The Department of Defense has awarded up to $5 million over five years for a multi-university research initiative led by David D. Awschalom, a professor of physics and of electrical and computer engineering, to develop a chip that can independently process electronic, magnetic, and optical information and convert from any one type to any other type of information.

Described as a "multifunctional" chip, it would be highly compact and use considerably less power than would a system constructed from several components to perform the same function. Current electronic devices rely on the electron charge to transport and store information, but the new technological approach to be pursued by this collaboration relies on using another property of the electron, called "spin," to store and transport information, and to interface with optics and magnetics.

At UCSB, Awschalom is director of the Center for Spintronics and Quantum Computation. He also serves as associate scientific director of the California NanoSystems Institute (CNSI). The spintronics center that Awschalom heads is affiliated with the CNSI, one of the four California Institutes for Science and Innovation established in 2000 and supported by the state and private industry. The nanosystems institute is a joint project of UC Santa Barbara and UCLA.

Awschalom and his research group have pioneered new experimental techniques that made possible the discovery of long-lived electron spin lifetimes and coherence in semiconductors and nanostructures. They recently demonstrated all-electrical generation and manipulation of both electron and nuclear spins in prototype solid-state devices. This work opens the door to new opportunities for research and technology in the emerging fields of semiconductor spintronics and quantum computation, including the development of fundamentally new systems for high density storage, ultra-fast information processing, and secure communication.

The MURI consortium includes UC Santa Barbara, Cornell University, Pennsylvania State University, The University of Iowa, The University of Minnesota, and The University of Virginia. The program will be monitored by Chagaan Baatar of the Office of Naval Research.

Source: University of California - Santa Barbara

Explore further: Scientists to study diamond-based quantum information processing, communication

Related Stories

UChicago to lead quantum engineering research team

May 14, 2014

The University of Chicago's Institute for Molecular Engineering will lead a team of researchers from five universities in an ambitious five-year, $6.75 million project to create a new class of quantum devices that will allow ...

Spintronics approach enables new quantum technologies

June 4, 2013

(Phys.org) —A team of researchers including members of the University of Chicago's Institute for Molecular Engineering highlight the power of emerging quantum technologies in two recent papers published in the Proceedings ...

Recommended for you

Physicists design $100 handheld muon detector

November 20, 2017

At any given moment, the Earth's atmosphere is showered with high-energy cosmic rays that have been blasted from supernovae and other astrophysical phenomena far beyond the Solar System. When cosmic rays collide with the ...

The strange case of the scuba-diving fly

November 20, 2017

More than a century ago, American writer Mark Twain observed a curious phenomenon at Mono Lake, just to the east of Yosemite National Park: enormous numbers of small flies would crawl underwater to forage and lay eggs, but ...

Recurring martian streaks: flowing sand, not water?

November 20, 2017

Dark features on Mars previously considered evidence for subsurface flowing of water are interpreted by new research as granular flows, where grains of sand and dust slip downhill to make dark streaks, rather than the ground ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.