Physicist to Present New Exact Solution of Einstein's Gravitational Field Equation

February 11, 2006

New antigravity solution will enable space travel near speed of light by the end of this century, he predicts.
On Tuesday, Feb. 14, noted physicist Dr. Franklin Felber will present his new exact solution of Einstein's 90-year-old gravitational field equation to the Space Technology and Applications International Forum (STAIF) in Albuquerque. The solution is the first that accounts for masses moving near the speed of light.

Felber's antigravity discovery solves the two greatest engineering challenges to space travel near the speed of light: identifying an energy source capable of producing the acceleration; and limiting stresses on humans and equipment during rapid acceleration.

"Dr. Felber's research will revolutionize space flight mechanics by offering an entirely new way to send spacecraft into flight," said Dr. Eric Davis, Institute for Advanced Studies at Austin and STAIF peer reviewer of Felber's work. "His rigorously tested and truly unique thinking has taken us a huge step forward in making near-speed-of-light space travel safe, possible, and much less costly."

The field equation of Einstein's General Theory of Relativity has never before been solved to calculate the gravitational field of a mass moving close to the speed of light. Felber's research shows that any mass moving faster than 57.7 percent of the speed of light will gravitationally repel other masses lying within a narrow 'antigravity beam' in front of it. The closer a mass gets to the speed of light, the stronger its 'antigravity beam' becomes.

Felber's calculations show how to use the repulsion of a body speeding through space to provide the enormous energy needed to accelerate massive payloads quickly with negligible stress. The new solution of Einstein's field equation shows that the payload would 'fall weightlessly' in an antigravity beam even as it was accelerated close to the speed of light.

Accelerating a 1-ton payload to 90 percent of the speed of light requires an energy of at least 30 billion tons of TNT. In the 'antigravity beam' of a speeding star, a payload would draw its energy from the antigravity force of the much more massive star. In effect, the payload would be hitching a ride on a star.

"Based on this research, I expect a mission to accelerate a massive payload to a 'good fraction of light speed' will be launched before the end of this century," said Dr. Felber. "These antigravity solutions of Einstein's theory can change our view of our ability to travel to the far reaches of our universe."

More immediately, Felber's new solution can be used to test Einstein's theory of gravity at low cost in a storage-ring laboratory facility by detecting antigravity in the unexplored regime of near-speed-of-light velocities.

During his 30-year career, Dr. Felber has led physics research and development programs for the Army, Navy, Air Force, and Marine Corps, the Defense Advanced Research Projects Agency, the Defense Threat Reduction Agency, the Department of Energy and Department of Transportation, the National Institute of Justice, National Institutes of Health, and national laboratories. Dr. Felber is Vice President and Co-founder of Starmark.

Source: Starmark

Explore further: Relativistic effects on long-range interactions between objects

Related Stories

New math bridges holography and twistor theory

March 30, 2018

The modern-day theoretical physicist faces a taxing uphill climb. "As we learn more, reality becomes ever more subtle; the absolute becomes relative, the fixed becomes dynamical, the definite is laden with uncertainty," writes ...

Studying supernovae, finding the origins of life

March 29, 2018

Many stars die with a whimper, subsiding into cool, small stars, but the most massive go out with a bang. These giants produce elements in their cores, and when the stars explode into the spectacular phenomena known as supernovae, ...

Some black holes erase your past

February 21, 2018

In the real world, your past uniquely determines your future. If a physicist knows how the universe starts out, she can calculate its future for all time and all space.

Recommended for you

New theory shows how strain makes for better catalysts

April 20, 2018

Brown University researchers have developed a new theory to explain why stretching or compressing metal catalysts can make them perform better. The theory, described in the journal Nature Catalysis, could open new design ...

Is dark matter made of primordial black holes?

April 20, 2018

Astronomers studying the motions of galaxies and the character of the cosmic microwave background radiation came to realize in the last century that most of the matter in the universe was not visible. About 84 percent of ...

Muons spin tales of undiscovered particles

April 20, 2018

Scientists at U.S. Department of Energy (DOE) national laboratories are collaborating to test a magnetic property of the muon. Their experiment could point to the existence of physics beyond our current understanding, including ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
3 / 5 (2) Oct 28, 2007
Another competing propulsion technology proposes 10 % speed of light using Advanced Electric Propulsion Linear Electron Beam Particle Accelerator (LINAC) and light speed electron particle propulsion using the Sunyaev-Zel'dovich effect.

http://en.wikiped...h_effect

http://nlspropulsion.net

What ever technology gets us off this rock and out in space would be great.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.