Nano World: Methanol fuel cell thru nano

February 21, 2006

Nanotechnological fuel cells that run on methanol could one day power everything from cell phones to cars, experts told UPI's Nano World.

For laptops, cell phones and other portable electronics, "we envision a fuel cell system about the size of a cigarette lighter that could be refueled by inserting a small cartridge of methanol," said researcher Prashant Kumta, a materials scientist at Carnegie Mellon University in Pittsburgh. Methanol fuel cells would also "definitely be useful for automotive applications, with cars running on just a tank of methanol."

Fuel cells generate electricity by reacting fuel. Most fuel cells use hydrogen as fuel, but hydrogen is currently expensive and hard to produce in large quantities.

The fuel cells Kumta and his colleagues are investigating are powered by commonly available methanol and water. When the methanol and water make contact with a catalyst, they break down into electrons, protons and carbon dioxide. A special plastic membrane allows the protons to pass while blocking the electrons, which instead flow through a circuit to generate an electrical current. The carbon dioxide gets vented away.

The catalyst in methanol fuel cells is coated onto a support typically made of carbon, a good conductor that holds up well in the acidic environment inside the fuel cells and is common and cheap. The problem was that the catalyst particles, often made of platinum or of platinum and ruthenium, bonded very poorly onto the carbon, instead tending to migrate off, clump together and eventually dissolve, thereby reducing performance.

Kumta and his team instead used titanium nitride as supports. They grew particles of catalytic platinum-ruthenium roughly three nanometers or billionths of a meter wide onto titanium nitride particles 10 nanometers across. The titanium nitride bonds strongly with the catalyst and is as electrically conductive as carbon, "if not better," Kumta said. The titanium nitride and catalyst nanoparticles showed excellent activity and stability compared with carbon-supported platinum-ruthenium catalysts, he added. These are preliminary findings and improvements are possible with further optimization.

"This piece of work is quite an advance in my opinion," said electrochemist S.R. Narayanan at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Using titanium nitride is definitely technically a good idea."

The nanoscale nature of these components ensures an extraordinarily high amount of surface area for the fuel cell reactions to take place on, which should help lead to highly efficient devices. Kumta presented his team's research on February 18 at the annual meeting of the American Association for the Advancement of Science in St. Louis.

Copyright 2006 by United Press International

Explore further: Converting carbon dioxide to carbon monoxide using water, electricity

Related Stories

Researchers make alcohol out of thin air

September 11, 2017

It may sound too good to be true, but TU Delft PhD student Ming Ma has found a way to produce alcohol out of thin air. Or to be more precise, he has found how to effectively and precisely control the process of electroreduction ...

Researchers devise a new way of producing hydrogen fuel

September 4, 2017

A U.S.-based team of researchers including MIPT scientists has assembled a nanoscale biological structure capable of producing hydrogen from water using light. They inserted a photosensitive protein into nanodiscs—circular ...

Panasonic Engineers Introduce Methanol Fuel Cell Prototype

October 22, 2008

(PhysOrg.com) -- Engineers at Panasonic will showcase their new reduced size methanol fuel cell at the Hydrogen Energy Advanced Technology Exhibition 2008 in Fukuoka, Kyushu, Japan. Japan's most populated city will host the ...

Recommended for you

Discovery lights path for Alzheimer's research

October 19, 2017

A probe invented at Rice University that lights up when it binds to a misfolded amyloid beta peptide—the kind suspected of causing Alzheimer's disease—has identified a specific binding site on the protein that could facilitate ...

Ancient DNA offers new view on saber-toothed cats' past

October 19, 2017

Researchers who've analyzed the complete mitochondrial genomes from ancient samples representing two species of saber-toothed cats have a new take on the animals' history over the last 50,000 years. The data suggest that ...

Gene editing in the brain gets a major upgrade

October 19, 2017

Genome editing technologies have revolutionized biomedical science, providing a fast and easy way to modify genes. However, the technique allowing scientists to carryout the most precise edits, doesn't work in cells that ...

Gut bacteria from wild mice boost health in lab mice

October 19, 2017

Laboratory mice that are given the gut bacteria of wild mice can survive a deadly flu virus infection and fight colorectal cancer dramatically better than laboratory mice with their own gut bacteria, researchers report October ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.