Organic Hydrogen Storage

February 24, 2006

Fossil fuels are limited and polluting, hence the search for alternatives. One suitable and environmentally sound fuel would be hydrogen; unfortunately there are currently few technical possibilities for the construction of safe and efficient hydrogen storage tanks that are suitable for cars. One possible solution to the hydrogen storage problem is to use microporous materials such as zeolites or activated carbons, which have many molecular sizes holes suitable for the containment of hydrogen and can also release it when needed.

Neil McKeown, of Cardiff University, UK, and his collaborators, Peter Budd (University of Manchester) and David Book (University of Birmingham) have chosen a new approach: they have developed a purely organic polymer that can adsorb appreciable quantities of hydrogen.

The molecular chains in most organic polymers are so flexible that they can form tightly packed structures. This means there are no cavities inside, and thus no appreciable internal surface onto which substances could be adsorbed. The chemists thus constructed polymers from interlinked five- and six-membered rings. At defined points in the molecule, two five-membered rings are connected in such a way as to provide a contorted shape to the stiff macromolecular structures. The contorted molecules cannot pack together efficiently and leave gaps and interstices. These “polymers of intrinsic microporosity” (PIMs) have large internal surface areas of over 800 m2 per gram of material — equivalent to the surface area of three tennis courts.

In reproducible synthetic steps, the researchers have produced chemically homogenous materials with a uniform distribution of pore sizes of 0.6–0.7 nm. These ultrasmall pores can absorb and then release between 1.4 and 1.7% hydrogen. Depending on the selection of building blocks the researchers can produce insoluble networks or polymers that are soluble in solvents and can thus be processed into useful shapes like common plastics.

In order for the PIMs to store enough hydrogen to be useful they must be optimized further. “However, there is great potential for tailoring the PIM structure by both chemistry and polymer processing techniques” says McKeown, who anticipates that by the year 2010 they will have succeeded in preparing a PIM capable of storing up to 6% hydrogen.

Author: Neil B. McKeown, Cardiff University (UK),
Title: Towards Polymer-based Hydrogen Storage Materials: Engineering Ultramicroporous Cavities Within Polymers of Intrinsic Microporosity
Angewandte Chemie International Edition 2006, 45, 1804, doi: 10.1002/anie.200504241

Source: Angewandte Chemie

Explore further: What can we learn from dinosaur proteins?

Related Stories

What can we learn from dinosaur proteins?

April 24, 2017

DNA might get all the attention, but proteins do the work. The recent confirmation that it is possible to extract proteins—which are encoded by DNA and perform all of the functions that keep living cells alive—from 80-million-year-old ...

Materials may lead to self-healing smartphones

April 4, 2017

Taking a cue from the Marvel Universe, researchers report that they have developed a self-healing polymeric material with an eye toward electronics and soft robotics that can repair themselves. The material is stretchable ...

Clean technology to make low molecular weight chitosan

April 4, 2017

Researchers at MIPT have developed a new technique for obtaining low-molecular-weight, water-soluble chitin and chitosan. The proposed method relies on chitin and chitosan degradation by electron-beam plasma in a special ...

Recommended for you

SpaceX to launch classified US govt payload Sunday

April 29, 2017

SpaceX on Sunday is scheduled to make its first military launch, with a classified payload for the National Reconnaissance Office, which makes and operates spy satellites for the United States.

Is dark matter 'fuzzy'?

April 28, 2017

Astronomers have used data from NASA's Chandra X-ray Observatory to study the properties of dark matter, the mysterious, invisible substance that makes up a majority of matter in the universe. The study, which involves 13 ...

Mineral resource exhaustion is just a myth: study

April 28, 2017

Recent articles have declared that deposits of raw mineral materials (copper, zinc, etc.) will be exhausted within a few decades. An international team including the University of Geneva (UNIGE), Switzerland, has shown that ...

Mapping the edge of reality

April 28, 2017

Australian and German researchers have collaborated to develop a genetic algorithm to confirm the rejection of classical notions of causality.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.