Massive star cluster found in Milky Way

January 9, 2006

A massive cluster of red supergiants--super-sized stars on the verge of exploding--was recently discovered in the Milky Way by a group of stronomers using infrared technology to penetrate the thick dust that cloaks much of the galaxy.

Only a few hundred such stars are known to exist in the galaxy, with the previous largest collection of them containing only five. These are the biggest stars: a single red supergiant at the center of the solar system would reach the orbit of Jupiter. The 14 together imply a sea of smaller stars in the cluster having a total mass of at least 20,000 solar masses, according to astronomer Don Figer.

"It seems odd that here is a spectacularly bright cluster and that we are only seeing it now," says Figer, formerly at Space Telescope Science Institute and now at Rochester Institute of Technology. "We didn't have infrared technology until recently and so people are rescanning the whole galaxy."

He adds: "This gives us the richest sample of stars getting ready to explode. We still don't understand what they do in their last stage."

Figer presented his research at the American Astronomical Society meeting Jan. 9 in Washington, D.C.

Figer's finding may poke holes in some massive star formation models, which suggest that conditions are no longer favorable for this type of massive cluster formation. Ancient globular clusters, containing even more stars, were thought to have been born only very early, at the time of the formation of the galaxy.

"But that's probably not true because we're starting to see more massive clusters," Figer notes, adding that further infrared observation will probably reveal more examples.

Of further interest to Figer and his colleagues are the X-rays and rare gamma rays that hang over the cluster, located 18,900 light-years from earth. This high-energy fallout follows a star's destruction, the remnants of which are only energetic for a short time, giving scientists a snapshot in time of these stars at different stages of life.

The NASA-funded, five-year study will focus on 130 potential star clusters altogether, with the cluster of 14 supergiants being the team's first study.

The study was made possible with the use of a unique spectrograph built by a team led by John MacKenty, also of the STScI. The instrument--containing a tiny matrix of mirrors similar to those in projection televisions, according to Figer--captures spectral data on 100 stars at one time, a novel approach that made the project possible.

Figer and his colleagues will conduct detailed studies of the 14 individual stars using multiple resources, including the Hubble Space Telescope and the Spitzer telescope.

In addition to Figer, the international team of scientists working on this project include Massimo Robberto and Kester Smith of STScI; Francisco Najarro of the Instituto de Estructura de la Materia in Madrid, Spain; Rolf Kudritzki of the University of Hawaii in Honolulu; and Artemio Herrero of the Unversidad de La Laguna in Tenerife, Spain.

Source: Rochester Institute of Technology

Explore further: Mystery Solved: High-Energy Fireworks Linked To Massive Star Cluster

Related Stories

Stars Have a Weight Limit

March 9, 2005

Astronomers have taken an important step toward establishing an upper limit to the masses of stars. Using NASA's Hubble Space Telescope, they made the first direct measurement within our Milky Way Galaxy, and concluded stars ...

Mystery of Quintuplet stars in Milky Way solved

August 17, 2006

For the first time, scientists have identified the cluster of Quintuplet stars in the Milky Way's galactic center, next to the super massive black hole, as massive binary stars nearing the end of their life cycle, solving ...

Scientists find giant ring encircling exotic dead star

May 28, 2008

One of the most powerful eruptions in the universe might have spun an infrared ring around a rare and exotic star known as a magnetar, a highly magnetized neutron star and the remnant of a brilliant supernova explosion signaling ...

Magnetic mystery solved

January 28, 2005

Magnetars - stars with magnetic fields a thousand million million times stronger than Earth's - are formed when some of the biggest stars in the cosmos explode, says a team led by Australian ex-pat Bryan Gaensler of the ...

Recommended for you

So much depends on a tree guard

January 23, 2018

In a big city, trees, like people, like their space. In a new study, researchers at Columbia University found that street trees protected by guards that stopped passersby from trampling the surrounding soil absorbed runoff ...

First quantifiable observation of cloud seeding

January 23, 2018

A University of Wyoming researcher contributed to a paper that demonstrated, for the first time, direct observation of cloud seeding—from the growth of the ice crystals through the processes that occur in the clouds to ...

Root microbiome valuable key to plants surviving drought

January 23, 2018

Just as the microorganisms in our gut are increasingly recognized as important players in human health and behavior, new research from the University of Toronto Mississauga demonstrates that microorganisms are equally critical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.