
 

Mathematician's insight helps unravel knotty
problem
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The latest insight from Rice University assistant professor Shelly Harvey
is the kind of idea that comes along rarely for a theorist in any discipline:
It's an idea that is both simple and capable of explaining much.

The elegance of the idea and the breadth of its descriptive power are
most readily apparent to mathematicians within Harvey's chosen
discipline of topology. Harvey discovered an underlying structure -
which went unnoticed for more than 100 years - within the mathematical
descriptions that topologists most often use to characterize complex
knots. The work was described in a paper that recently appeared in the
journal Geometry and Topology.
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"If someone comes up with a new mathematical theory that's 300 pages
long with a lot of complex calculations, then you might suppose that the
reason it hadn't been done previously was that it was too difficult," said
fellow knot theorist and mathematics professor Tim Cochran. "However,
real truth should be simpler and more beautiful than that, and this idea of
Shelly's has the ring of truth to it. The moment I heard it, I knew she had
hit upon something quite special."

Harvey's discovery applies to a longstanding problem within knot theory,
but it can best be understood within the larger context of topology.
Topology is a branch of math that's sometimes called "rubber sheet
geometry" because topologists study objects that retain their spatial
properties even when they are twisted into odd shapes. A classic example
is the topological equivalence of a donut and a coffee cup. The donut
can be stretched into the shape of the cup, where the hole in the center
of the donut becomes the handle on the side of the cup. Thus the
property of "having one hole" is preserved.

One of the underlying insights of topology is that some geometric
problems depend not on the precise shape of objects but only on the way
they are connected. In the classic example, 18 th century mathematician
Leonhard Euler proved that it was impossible to find a route through the
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Russian city of Königsberg that crossed each of the cities seven bridges
just once. Topologically, the problem derives from the way the bridges
connect the major islands of the city, so the result would be the same
even if the primary shape of the town were - in the rubber-sheet analogy
- twisted into a complex three-dimensional shape.

In knot theory, topologists are concerned with the spatial arrangements
of unbroken lines that are folded in knots - not unlike a tangled kite
string or fishing line. While the study of knots may sound esoteric, it
does apply to real-world problems. DNA, for example, are long,
unbroken strings of amino acids that fold naturally into complex, knotted
clumps. The knotting and linking of strands of DNA is a biproduct of
natural cellular processes and their unknotting is necessary for the cell to
survive. It is known that enzymes dubbed topoisomerases have the job of
unknotting those clumps, and topologists have been collaborating with
cancer researchers in recent years to attempt to find novel cancer
treatments that capitalize on that.

Topologists are keen to find ways to prove that two shapes, which may
look very different, are truly inequivalent. One of the overarching goals
in knot theory is to find a method that can determine equivalency in
every case. Great attention has been paid to finding mathematical
measures of a knot's complexity that can then be used to describe
similarities and differences between knotted shapes. Sometimes these
measures are actual numbers, like the so-called "unknotting number of a
knot", and sometimes they are more sophisticated algebraic objects such
as matrices or polynomials. One such measure developed 100 years ago
by the Frenchman Henri Poincaré, which is reminiscent of Euler's
Königsberg bridges problem, uses algebra to measure all possible paths
that can be navigated in the space surrounding the knot, without ever
touching the string itself. This collection of data is called the
"fundamental group of the knot".
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"I realized that there's an algebraic structure within the fundamental
group of a knot. Some of these paths are more robust than others,"
Harvey said. "What Tim and I subsequently determined is that this
structure remains unchanged as you try to unravel the knots. It even
survives in four dimensions, which turns out to be a particularly handy
tool for knot theorists because four-dimensional problems - like the
jiggling of a DNA strand within a cell - happen to be some of the most
difficult topological problems to understand."

The configurations of knots shown in the two accompanying figures are
inequivalent even in 4-dimensions, a fact first shown using the work of
Harvey and Cochran. Since Harvey's observation is so fundamental, it
pertains as well to the study of many other topological objects, and these
applications form part of her on-going research program at Rice.
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