Radiation studies key to nuclear reactor life, recycling spent fuel

December 30, 2005

Two UW-Madison projects to study advanced materials and fuels for current and future nuclear reactors received roughly $1 million this month under the Department of Energy Nuclear Energy Research Initiative (NERI).

The NERI program supports research and development under three Department of Energy nuclear initiatives: Generation IV nuclear energy systems, advanced fuel cycles and nuclear hydrogen.

In one three-year project, UW-Madison nuclear engineers will study the resistance to radiation damage of oxide, carbide and nitride nuclear fuel "matrix" materials-the vessels that contain nuclear fuel. A second project will exploit recent advances in computational power and technique to develop computer models of how a reactor's structural materials behave as a result of long-term radiation exposure.

The projects were among 24 selected across the country; UW-Madison was among five universities to receive funding for multiple projects.

Matrix materials are a key element of future fast-spectrum reactors, which are capable of safely and efficiently recycling spent nuclear fuel. The nuclear fission process produces high-energy radioactive neutrons, called "fast" because of their great energy. Current thermal reactors use a moderator to reduce the neutrons' velocity, making them capable of sustaining the nuclear fission reaction using simpler fuel.

But to recycle and minimize the waste impact of the spent fuel, you need to keep those neutrons fast, says Todd Allen, an assistant professor of engineering physics. He and James Blanchard, a professor of engineering physics, are researching how proposed matrix materials hold up under a barrage of radiation.

"It's all in the context of devising new fuel forms that will allow you to efficiently recycle reactor fuel in a way that minimizes the net waste output from the entire fuel cycle," says Allen. "And the reason for looking at recycle is to limit the number of underground repositories you have to build."

Another project involves applying complex materials modeling to nuclear reactors. In it, Allen and Dane Morgan, an assistant professor of materials science and engineering, will incorporate the properties of iron, chromium and nickel into more complete computer models of radiation damage in steel, a common reactor structural material.

Previously, a lack of computing power limited such models to single pure materials like copper or iron. "People have learned a lot about radiation damage," says Allen. "But you never build anything out of just copper or just iron."

The effort may lead to structural materials that are better able to withstand long-term exposure to radiation-in some cases, nearly 60 years, says Allen.

Source: University of Wisconsin

Explore further: Storage of nuclear waste a 'global crisis': report

Related Stories

Storage of nuclear waste a 'global crisis': report

January 30, 2019

Nuclear waste is piling up around the world even as countries struggle to dispose of spent fuel that will remain highly toxic for many thousands of years, Greenpeace detailed in a report Wednesday.

IAEA urges Japan to take ample time in Fukushima cleanup

January 31, 2019

The International Atomic Energy Agency urged Japan on Thursday to spend ample time in developing a decommissioning plan for the tsunami-damaged Fukushima nuclear power plant and to be honest with the public about remaining ...

Zirconium isotope a master at neutron capture

January 17, 2019

The probability that a nucleus will absorb a neutron is important to many areas of nuclear science, including the production of elements in the cosmos, reactor performance, nuclear medicine and defense applications.

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Paleontologists report world's biggest Tyrannosaurus rex

March 22, 2019

University of Alberta paleontologists have just reported the world's biggest Tyrannosaurus rex and the largest dinosaur skeleton ever found in Canada. The 13-metre-long T. rex, nicknamed "Scotty," lived in prehistoric Saskatchewan ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.