Reliable to the nanometer

November 10, 2005

Small fault – major impact. Disruptions to production are often caused by electronic faults. They arise because no reliable measurement and testing methods exist for the ever-smaller dimensions of microchip components. Material tests for the nanocosmos provide a solution.

Microelectronic components are shrinking from one generation to the next. A problem exists, however, in that the material used often behaves quite differently in the micro- or nanocosmos than in the macroscopic world. Hardly any reliable data exists for this environment. In order to assess service life and quality, established techniques need to be combined with innovative concepts. One example is nanoDAC, a testing method developed by scientists from the Fraunhofer Institute for Reliability and Microintegration IZM in Berlin.

DAC stands for deformation analysis through correlation methods, and analyses materials at the nano- to micro-level. Up to now it has mainly been used in electronic assembly and connection technology to test solder joints, find cracks in PCB material or identify internal stresses in micromechanical actuators and sensors. “The significance of these tiny components is often underestimated,” insists IZM head of department Bernd Michel. “A solder point or a small sensor does not cost much, so why go to all the effort of testing? If they fail, however, they can cause heavy financial losses.”

At the heart of the system is an atomic force and scanning electron microscope that takes pictures of materials under various loads. A software program makes it possible to reproduce an almost atom-precise image of the sample and its faults. “Images of the critical areas of a component are compared with each other in order to identify changes and faults,” explains Dietmar Vogel. “Depending on the load, shifts in local image patterns are discernible.

A tiny crack can thus be identified although it cannot be recognized with certainty even in a microscopic image.” One special variant of the system is the fibDAC technique (FIB stands for Focus Ion Beam). This identifies internal stresses in the smallest dimensions, which offers interesting potential for microchip manufacture because internal stresses and their control play an important role in the development of new computer generations. Bernd Michel, Dietmar Vogel and Jürgen Keller designed the system and took it from the initial idea through to the marketable measurement technique.

They have been awarded the Joseph-von-Fraunhofer Prize in recognition of their achievement. The international response is proof enough of the widespread demand for such a testing method. Companies such as Infineon, BMW and Ford, as well as Bosch, TEMIC and Motorola, have already conducted material tests on a micro- and nanoscale or are planning to do so.

Source: Fraunhofer-Gesellschaft

Explore further: Researchers run first tests of unique system for welding highly irradiated metal alloys

Related Stories

New method to replicate harsh conditions for materials

February 15, 2018

Confining a plasma jet can be stress-inducing, especially on the shielding materials. Noting the limits inherent in the test methods currently used for such materials, Professor Patrizio Antici and his colleagues have proposed ...

Recommended for you

Archaeologists find ancient necropolis in Egypt

February 24, 2018

Egypt's Antiquities Ministry announced on Saturday the discovery of an ancient necropolis near the Nile Valley city of Minya, south of Cairo, the latest discovery in an area known to house ancient catacombs from the Pharaonic ...

AI and 5G in focus at top mobile fair

February 24, 2018

Phone makers will seek to entice new buyers with better cameras and bigger screens at the world's biggest mobile fair starting Monday in Spain after a year of flat smartphone sales.

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.