30 million years ahead - how the butterfly beat technology to it

November 19, 2005
Peter Vukusic (University of Exeter)

Butterflies have evolved a unique mechanism to create a dazzling display of colour which puts physicists in the shade. Modern light emitting devices have traditionally been inefficient because most of the light created can't escape, but now in a paper published in Science, University of Exeter scientists have discovered the butterfly has been doing what physics couldn't, for more than 30 million years.

Image: Peter Vukusic. (Copyright: University of Exeter)

In order for LEDs (light emitting diodes) to function efficiently physicists have spent years analysing their design to come up with features which help to maximise the amount of light released. These include a specialised mirror to reflect light and micro holes which stop light from being trapped inside the device or from spreading sideways.

But it seems anything we can do nature can do better. When Dr Pete Vukusic studied African Swallowtail butterflies he found the creatures had evolved to include exactly these adaptations. This butterfly emits blue-green light, which it uses for signalling, using a fluorescent pigment on its wings.

Dr Pete Vukusic, of the School of Physics said: "It's amazing that butterflies have evolved such sophisticated design features which can so exquisitely manipulate light and colour. Nature's design and engineering is truly inspirational. Pigment on the butterflies' wings absorbs ultra-violet light which is then re-emitted, using fluorescence, as brilliant blue-green light. This adds to the colour intensity of the wing. Much of this light would be lost, resulting in a much duller effect, but the pigment is located in a region of the wing which has evenly spaced micro-holes through it."

He continues: "The function of the micro-scales is identical to those in the LED; they prevent the fluorescent colour from being trapped inside the structure and from being emitted sideways. The scales on the wing also have a specialised mirror underneath them, again very similar in design to that in the LED. This mirror upwardly reflects all the fluorescent light that gets emitted down towards it. The result is a very efficient system for fluorescent emission that gives the butterfly significant control of the direction in which the light is emitted."

Source: University of Exeter

Explore further: Biosensor mouse lights up health and disease

Related Stories

Biosensor mouse lights up health and disease

October 6, 2017

Researchers from Sydney's Garvan Institute of Medical Research and the UK have developed a glow-in-the-dark "biosensor mouse" that gives a real-time readout of the rapidly changing "skeleton" within cells.

Red fluorescence in two steps

September 14, 2017

Scientists have identified the mechanism that allows fluorescent proteins to switch colour in two phases. They are thereby laying the groundwork for new applications in microscopy and functional analyses in biological research.

Fluorescent crystal mystery solved

August 31, 2017

A decades-old mystery of why a naturally-occurring organic crystal fluoresces blue under ultra-violet light, yet when grown under laboratory conditions fluoresces with an intense green colour, has been solved by scientists ...

Recommended for you

More efficient separation of methane and CO2

October 18, 2017

To make natural gas and biogas suitable for use, the methane has to be separated from the CO2. This involves the use of membranes, filters that stop the methane and allow the CO2 to pass through. Researchers at KU Leuven ...

New Amazon threat? Deforestation from mining

October 18, 2017

Sprawling mining operations in Brazil are destroying much more of the iconic Amazon forest than previously thought, says the first comprehensive study of mining deforestation in the world's largest tropical rainforest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.