Squeezing out dune plants

September 26, 2005

Researchers from Texas A&M University created a model to better understand the impacts of development and coastal erosion on plant communities, including plants that grow in the ever-shrinking strip of habitat between land and the ocean. Rusty Feagin, Douglas Sherman, and William Grant simulated varying levels of sea-level rise to understand the effects of erosion and development on sand dune plants. Their research appears in the September issue of Frontiers in Ecology and the Environment.

In most circumstances, as coastlines erode, plant communities are displaced away from the ocean, unless blocked by a barrier, such as a cliff. In areas like Galveston Island, natural cliffs are not the issue, but development and non-native lawns block the plants’ migration.

Creating models to explore low, medium, and high increases in sea levels for Galveston Island, Feagin and colleagues found that the combination of human-created barriers and sea level rise trapped plants in a small zone, altering the plant population as well as the dune structure.

Larger, sturdier plants – late-succession species – are the most important to preserve, yet these are the most likely species to be lost. These plants are critical in the formation of dunes, binding sediments, and reducing erosion, both in the long term and during events such as hurricanes. They also provide critical habitat for endangered animals such as the Kemp’s ridley sea turtle (Lepidochelys kempii).

According to the scientists, in a low sea-rise scenario, plant communities fully developed over five years, but in cases of moderate and high sea level rise, plant communities were too stressed to grow in many areas, leading to smaller dunes and an eventual breakdown of dune formation. In the higher water scenarios, the plant populations no longer provided windblocks, elevated dune structures, or added to the sand and soil fertility.

On Galveston Island, "the loss of such species is already occurring, where sea oats (Uniola paniculata) have disappeared due to a combination of human-induced disturbance and climate change," say the researchers.

All this means faster erosion and less protection for the people, animals, and buildings on Galveston Island.

Explore further: 'Ant-like' bees among new desert species identified by USU entomologist

Related Stories

Why were there so many dinosaur species?

December 13, 2016

A new species of dinosaur is described, on average, every 10 days. As many as 31 species have already been reported this year and we can expect a few more before 2016 is over. Of course, figuring out what counts as a distinct ...

Rare dune plants thrive on disturbance

April 27, 2015

Beginning in the 1880s, coastal dunes in the United States were planted with European beachgrass (Ammophila arenaria) in an attempt to hold the sand in place and prevent it from migrating. The grass did the job it was brought ...

Exotic plant takes over dunes of Southern Spain

March 29, 2010

Introduced more than 40 years ago, Galenia pubescens, an exotic plant from South Africa is found in great numbers in altered coastal environments in the south of Spain. Since its impacts on the ecosystem are unknown, a Spanish ...

Model to better understand dune plants

September 24, 2005

Texas A&M University researchers have created a model to better understand the impacts of development and coastal erosion on plant communities.

Recommended for you

Synthetic chemicals: Ignored agents of global change

January 24, 2017

Despite a steady rise in the manufacture and release of synthetic chemicals, research on the ecological effects of pharmaceuticals, pesticides, and industrial chemicals is severely lacking. This blind spot undermines efforts ...

80-million-year-old dinosaur collagen confirmed

January 23, 2017

Utilizing the most rigorous testing methods to date, researchers from North Carolina State University have isolated additional collagen peptides from an 80-million-year-old Brachylophosaurus. The work lends further support ...

Camera able to capture imagery of an optical Mach cone

January 23, 2017

(Phys.org)—A team of researchers at Washington University in St. Louis has built a camera apparatus capable of capturing moving imagery of an optical Mach cone. In their paper published in the journal Science Advances, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.