Study discovers how beetle shells harden

August 5, 2005

Kansas State University researchers think their discovery of the enzyme involved in the hardening of a beetle's exoskeleton or cuticle could lead not only to better pest control, but also help create similar strong, lightweight materials for use in aircraft and armor.

After a beetle first molts, its exoskeleton is soft and hydrated. Somehow, it dries out and forms a hard, stiff exoskeleton. Since the 1940s, scientists have wondered which enzyme among several possible candidates was involved in the hardening process.

The K-State researchers have found that by knocking out an enzyme called laccase-2, cuticle tanning, the process of hardening and pigmentation, can be prevented in the red flour beetle, Tribolium castaneum.

A paper, to be released the week of Aug. 1 in the Proceedings of the National Academy of Sciences, presents the research results. The K-State researchers are Yasuyuki Arakane, research associate in biochemistry; Subbaratnam Muthukrishnan, professor of biochemistry; Richard Beeman, adjunct professor of entomology; Michael Kanost, professor and head of the department of biochemistry; and Karl Kramer, adjunct professor emeritus of biochemistry.

Kramer said K-State researchers wanted to find out what happens between the times when the cuticle is soft and when it is hard. They studied the cuticle's composition and how the components interacted to give it stiffness, flexibility and lightness. The main components in the cuticle are proteins and chitin, which also are found in crustaceans and other invertebrates.

The researchers knew one of two classes of oxidative enzymes, tyrosinases or laccases, is likely responsible for catalyzing the exoskeleton's hardening by cross-linking cuticular proteins, Kanost said.

"When we knocked out tyrosinase, everything was normal," Kramer said. "When we knocked out laccase-2, we prevented tanning from taking place."

When the laccase-2 gene was not expressed, the newly formed cuticle remained soft and white instead of becoming hard and dark-colored. These results indicated which protein was responsible for the hard shell's formation, Kanost said.

The identification of laccase-2 as the catalyst for cuticle tanning opens up possibilities of targeting this protein as a way of weakening the beetle's physical defenses against mechanical, chemical and biological injuries, Muthukrishnan said. Better insecticides could be developed as a result of having a more insect-specific target like laccase-2, Kramer said.

"Gaining knowledge about a molecular process required for insect development, but absent from humans and other vertebrate animals, such as cuticle tanning, may be useful for developing new, bio-rational methods for controlling pest insect populations," Kanost said.

Armed with this new information, a number of practical applications are possible. Materials based on the chemistry of the insect exoskeleton could be developed to make lightweight materials for aircraft and military armor, Kramer said.

"I sometimes speculate that we might help K-State coach Bill Snyder develop better football helmets and shoulder pads for his players," he said.

Collaborative research with scientists at the University of Kansas is in the beginning stages to analyze quantitatively the mechanical properties of insect cuticles and to perform cuticle protein cross-linking experiments that are catalyzed by insect laccase, Kramer said. KU scientists will test the strength of the synthetic cross-linked biopolymers that are created. This could be used for the development of strong, lightweight materials.

Both Beeman and Kramer also work at the Grain Marketing and Production Research Center, Agricultural Research Service, United States Department of Agriculture, in Manhattan.

This research has been supported by a grant from the National Science Foundation.

Source: Kansas State University

Related Stories

Recommended for you

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

May 26, 2017

On Oct. 13, 2014 something very strange happened to the camera aboard NASA's Lunar Reconnaissance Orbiter (LRO). The Lunar Reconnaissance Orbiter Camera (LROC), which normally produces beautifully clear images of the lunar ...

The high cost of communication among social bees

May 26, 2017

(Phys.org)—Eusocial insects are predominantly dependent on chemosensory communication to coordinate social organization and define group membership. As the social complexity of a species increases, individual members require ...

Toward mass-producible quantum computers

May 26, 2017

Quantum computers are experimental devices that offer large speedups on some computational problems. One promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials.

Conch shells spill the secret to their toughness

May 26, 2017

The shells of marine organisms take a beating from impacts due to storms and tides, rocky shores, and sharp-toothed predators. But as recent research has demonstrated, one type of shell stands out above all the others in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.